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Abstract

We characterize the laminations that arise from conformal mappings onto planar
dendrites whose complement is a John domain. This generalizes the well-known
characterization of quasicircles via conformal welding. Our construction of a John
domain from a given lamination introduces a canonical realization of finite laminations,
and generalizes to some Hölder domains. In particular, we show that the Continuum
Random Tree admits conformal welding and yields such Hölder domains. We also show
that this conformal CRT is the (distributional) limit of uniformly random Shabat-trees
as the degree of the Shabat polynomial tends to infinity.

Figure 0.1: The conformal embedding of the Continuum Random Tree
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1 Introduction and Results

1.1 Statement of Results

Every conformal map f of the exterior of the unit disc ∆ = {|z| > 1} ⊂ C onto the
complement of a dendrite T ⊂ C, a locally connected continuum that contains no simple
closed curves, extends continuously to the unit circle T. It induces an equivalence relation
L = LT on T via

L = {(z, w) ∈ T× T : f(z) = f(w)},

the lamination associated with T. We also write z ∼ w if (z, w) ∈ L.

In this paper we consider the question: Which laminations arise from dendrites? In other
words, given a lamination L, does there exist a dendrite T such that L = LT? In this
generality, the question is out of reach of current methods: Already the classical conformal
welding problem, which corresponds to the very special class of dendrites that are simple arcs,
does not have a satisfying answer in this generality. On the other hand, under the relatively
mild regularity assumption that the arc is quasiconformal, a satisfying theory exists and the
lamination is given by a quasisymmetric map ([Leu96]). One of the main results of this paper
is a characterization of the lamination in the setting of Gehring trees, which are dendrites
whose complements are John domains. The methods that we develop also apply beyond this
quasiconformal regularity and allow us to show that the Brownian lamination corresponds to
a dendrite almost surely.

The Brownian lamination is a random equivalence relation on T obtained from the Brownian
excursion as follows. Let e : [0, 1]→ [0,∞) be any continuous function with e(0) = e(1) = 0,
i.e. an excursion. This induces a pseudometric de(·, ·) on [0, 1] by

de(x, y) = e(x) + e(y)− 2 min
t∈[x,y]

e(t), x, y ∈ [0, 1].(1.1)

Define x ∼e y if and only if de(x, y) = 0. In particular 0 ∼e 1, so we can view ∼e as an
equivalence relation on the unit circle T := R/Z. If e is taken to be the standard Brownian
excursion, then the resulting random equivalence relation ∼e is called the Brownian lamination.
The quotient of T under the Brownian lamination is known as the continuum random tree
(CRT) [Ald91].

In order to state our results precisely, we need to introduce some terminology, aiming at a
description of an annular neighborhood of a point p ∈ T in terms of the lamination.

For x ∈ T and parameters C > 0, N ∈ N we call a number 0 < r < 1 a (very) good scale,
r ∈ G(x,C,N), if the following holds (see Figures 1.1 and 4.1):
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Figure 1.1: The definition of a good scale, depicted here near a triple point of a tree, requires
many leaves of the lamination connecting a chain of intervals. See Figure 4.1 for the situation
in the corresponding tree.

There are pairs of disjoint adjacent intervals Ij, I
′
j, j = 1, ..., n (possibly n = 1) with n ≤ N ,

uniformly perfect subsets Aj ⊂ Ij, A
′
j ⊂ I ′j where A′n+1 := A′1, and decreasing (orientation

reversing) quasisymmetric homeomorphisms φj : Aj → A′j+1 such that I1∩I ′1 = {x}, |I1| �C r,
|Ij| �C |I ′j| �C diamAj �C diamA′j for all j , and such that (t, φj(t)) ∈ L for all t ∈ Aj .

Theorem 1.1. If there are C,N and ε > 0 such that for every x ∈ T, the set of good scales
has lower density ≥ ε,

|{k ≤ n : 2−k ∈ G(x,C,N)}|
n

≥ ε

for all n, then L is the lamination of a Hölder-tree. If every scale r is good, then L is the
lamination of a Gehring tree.

It follows from P. Jones’ removability theorem [Jon91] that the dendrite of Theorem 1.1 is
unique up to a linear map: Indeed, given any two realizations f and g of the same lamination
L, the conformal map g ◦ f−1 of the complement of the first dendrite has a homeomorphic
extension to the plane and hence is linear. By the Jones-Smirnov removability theorem [JS00],
this argument generalizes to dendrites whose complement is a Hölder domain.

In the opposite direction, we will show

Theorem 1.2. If L is the lamination of a Gehring tree, then there are C,N such that for
every x ∈ T, every scale r is good.

Combining Theorems 1.1 and 1.2 we thus obtain a characterization of Gehring trees in terms
their laminations. The existence of such a characterization was conjectured (unpublished) by
Chris Bishop and Peter Jones.

There is another definition of “good scale” that applies in more generality and so that
Theorems 1.1 and 1.2 are still true, see Definition 3.11 in Section 3.2.

4



We prove that this weaker condition is satisfied for the Brownian lamination, and obtain

Theorem 1.3. Almost surely, the CRT admits conformal welding.

Rather than proving this theorem directly, we prove a stronger result regarding convergence
of Shabat trees. Shabat trees are the special case of Grothendieck’s dessin d’enfant where the
graph is a tree drawn on the sphere so that the Belyi function is a polynomial, known as a
Shabat polynomial or generalized Chebychev polynomial. They arise in a number of different
ways, and in particular can be shown ([Bia09, Bis14]) to be the dendrites whose laminations
are given by non-crossing pairings of 2n arcs of equal size on the circle. Equivalently, these
laminations are given by the Dyck paths S coding the trees via (1.1). Thus a Shabat tree
with n edges chosen uniformly at random can be viewed as the welding solution to the
lamination associated with simple random walk excursions of length 2n via (1.1). Roughly
speaking, we prove that the (suitably normalized) uniform random Shabat tree of n edges
converges (distributionally in the Hausdorff topology, and even stronger the topology induced
by conformal parametrization) to the random dendrite of Theorem 1.3. More precisely, it is
not hard to show that these laminations of simple random walk excursions converge to the
Brownian lamination in distribution (similar to the convergence of rescaled simple random
walk to Brownian motion), and we show that the solutions to the welding problems also
converge.

Theorem 1.4. There exists a constant α > 0 such that the following holds. If fn : ∆→ C
is the welding map for the uniform random lamination (the random non-crossing pairing of
2n arcs), then fn converges in distribution to a (random) conformal map f , with respect to
uniform convergence on ∆. Furthermore, f is almost surely α-Hölder continuous. The law of
the associated lamination Lf is that of the Brownian lamination.

1.2 Motivation and Background

Already Koebe, in his work [Koe36] on conformal maps onto domains bounded by (touching)
circles, considered the question of conformally realizing finite laminations. In geometric
function theory, conformal welding of Jordan curves plays an important role, and the problem
of conformally realizing a given lamination is a natural generalization. The starting point of
our investigation was the desire to establish the analog of the well-understood quasiconformal
theory of conformal welding in the setting of laminations. Theorems 1.1 and 1.2 constitute
such an analog.

A generalized Chebyshev polynomial or Shabat polynomial is a polynomial p(z) that has at
most two critical values, see [BZ96] for the basic theory. If the critical values to are 0 and 1,
then the preimage of the interval [0, 1] is easily seen to be a tree T , consisting of d = deg(p)
analytic arcs. Shabat polynomials (and, more generally, Belyi functions) have been intensely
studied in their connection to algebraic geometry, number theory, and computational algebra.
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It is not hard to see that each ‘combinatorial tree’ (that is, a finite connected graph without
loops) can be realized by a Shabat polynomial. The elegant description of these Shabat trees
in terms of conformal laminations mentioned before Theorem 1.4 was given by Biane [Bia09]
and independently [Bis14]. Small examples can be computed explicitly, for instance by solving
the system of algebraic equations that the critical points satisfy. However, the computational
complexity is exponential in the degree d, and explicit computations of large examples seem
out of reach at present. Don Marshall’s zipper algorithm [Mar] (see also [MR07]) provides
numerical solutions to conformal welding problems and is remarkably accurate, particularly in
the setting of quasisymmetric weldings. In the forthcoming [MR], Don Marshall and the second
author describe a closely related zipper algorithm that allows to numerically approximate
conformal realizations of laminations, and give applications to Shabat polynomials. The
numerical accuracy of Don Marshall’s implementation of this algorithm is most remarkable.
It seems reasonable to believe, and is supported by the numerical computations for trees
with thousands of edges discussed in [MR], that the algorithm converges at least for Gehring
trees. Both figures 0.1 and 1.2 were generated with Marshall’s program. Understanding
the apparent and perhaps surprising numerical accuracy of this algorithm provides another
motivation for the present work.

Conformal laminations arise naturally in complex dynamics: Beginning with Thurston [Thu09]
and Douady-Hubbard [DH84], conformal laminations of Julia sets of quadratic polynomials
have been studied and used to give combinatorial models of both Julia sets and the Mandel-
brot set. The question which laminations allow for a conformal realization has been raised in
numerous places and has been identified as difficult, see for instance the comments in [Dou93]
and [Smi01b]. Some results about existence in a setting somewhat dual to ours, namely that
of small support of L (logarithmic capacity zero of the set of endpoints) can be found in the
Ph.D. theses [Leu96] and [Gup04]. In the setting of quadratic Julia sets, it has been proved
that the set of bi-accessible points is always of harmonic measure zero [Zdu00, Smi01a] and
even of dimension less then one [MS13], except for the Tchebyscheff polynomial z2 − 2. In
a different direction, Carleson, Jones and Yoccoz [CJY94] have shown that the domain of
attraction to ∞ is a John-domain if and only if the polynomial is semi-hyperbolic, namely
the critical point 0 is non-recurrent (and there is no parabolic point). The most prominent
examples are the post-critically finite polynomials such as z2 + i, where the critical point is
pre-periodic. The first author has given a combinatorial description of semi-hyperbolicity and
proved that the conditions of Theorem 1.1 can be verified directly from the combinatorics,
see [Lin18].

Theorem 1.5. The lamination of a combinatorially semi-hyperbolic quadratic polynomial
satisfies the condition of Theorem 1.1, hence the Julia set is a Gehring tree.

In fact, in this case the uniformly perfect sets can be chosen as linear Cantor sets, and the
quasisymmetric homeomorphisms are linear maps. As a corollary, this gives a new proof of
the Carleson-Jones-Yoccoz theorem (in the quadratic setting).
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In [HS94], Hubbard and Schleicher gave a proof of convergence of the spider-algorithm in the
periodic case of critically finite quadratics. Based on Example 5.2, it is not hard to relate the
spider-algorithm to our balloon animals, and then our proof of Theorem 1.1 yields a new
proof of

Corollary 1.6. The Hubbard-Schleicher spider-algorithm converges for nonperiodic postcriti-
cally finite quadratic polynomials.

Another motivation comes from potential applications to questions related to random maps
originating in probability theory and statistical physics. The description of SLE in terms of
its conformal welding plays a central role in the Miller-Sheffield theory [MS16a, She16], and
the (lack of) regularity of the welding still poses challenges for the deterministic machinery
[AKSJ11].

In a different direction, groundbreaking work of Le Gall [LG07], Miermont [Mie13], Miller
and Sheffield ([MS16b] and the references therein) established the Brownian map as the
scaling limit of random planar maps as the number of faces tends to infinity, and suggests
that a conformal structure on the Brownian map can be thought of as the conformal mating
of two correlated copies of the conformal CRT described by our Theorem 1.3. We hope that
the methods introduced in this paper will be useful in establishing the existence of the “slow
mating” of trees in the sense of complex dynamics as described in [PM12].

Figure 1.2: The conformal realization of the binary tree with 6141 edges.

1.3 Overview of proofs

The strategy of the proof of Theorem 1.2 can be summarized as follows. John domains can
be viewed as one-sided quasidiscs (see Section 2.2) and have good localization properties,
see [Jon91] for important examples. For the necessity of the condition, we give a geometric
construction (Proposition 4.1) of a localization that provides a decomposition of an annulus
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into a chain of boundedly many topological squares as in Figure 4.1. The boundaries of two
consecutive squares are connected through a subset of the tree. Typically, the harmonic
measures of different “sides” of the tree are typically mutually singular, in other words the set
of bi-accessible points is of harmonic measure zero. This is dealt with by proving the existence
of a large set (in the sense of potential theory) of biaccessible points. Another difficulty
is that the size alone of the set of biaccessible points provides no information: Indeed, in
the classical welding problem (trees without branching) every point is biaccessible. What is
needed in addition is control over the quality of the welding. We show that there is a large
subset of the set of biaccessible points on which the welding is quasisymmetric. This relies
on a result of Väisälä that conformal maps between John domains are quasisymmetric in the
internal metric, combined with a construction of a subset of the tree where the euclidean and
the internal metric are comparable.

Now we turn to the proofs of the remaining theorems. These existence theorems are proved by
constructing certain well-chosen approximations for the given lamination for which the welding
solution is known to exist, and showing that the welding solutions for these approximations
converge.

Figure 1.2 shows the solution to the welding problem for the lamination corresponding a
regular tree of depth n = 11, where each (half)-edge has the same harmonic measure with
respect to infinity. It can be shown (see [Lin] for details) that as n→∞, the diameter of the
middle edges stays bounded below. This implies that the associated conformal welding maps
fn cannot converge uniformly on ∆, as each edge is the image of an arc of size 1

2
(3 · 2n − 3)−1

under fn. However, along subsequences, the fn do converge locally uniformly to a conformal
limit (we believe that the limit exists and that is a conformal map onto a Jordan domain).
An easier example of the same phenomenon is the conformal map z 7→ (zn + z−n + 2)1/n onto
the complement of a star with n edges; these map clearly do not converge uniformly on ∆,
however they converge locally uniformly to the identity on ∆.

These examples illustrate the main difficulty in the proofs of Theorems 1.1, 1.3 and 1.4. To
deal with this, we need to bound the diameter of images of arcs I ⊂ T under the welding
fn.

A standard idea in geometric function theory for doing this is to construct many thick
conformal annuli surrounding the set fn(I). We will construct these annuli as conformal
weldings of chains of rectangles in ∆. Control over the modulus of the resulting annulus relies
on the following key observations (Propositions 3.2 and 3.4) that the conformal modulus of the
welding of two squares along an edge can be bounded in terms of the regularity of the gluing
on a sufficiently large subset. We use this in Theorem 3.9 to establish a condition ensuring
the nondegeneracy of the annuli constructed from gluings of chains of rectangles.

For the proof of Theorem 1.1, another difficulty is in finding an appropriate way to approximate
a lamination and its solution. A key idea is that any finite lamination has a canonical
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realization that we call a balloon animal, Proposition 5.1 and Figure 5.1: It is characterized
by the property that harmonic measure at ∞ and the harmonic measures of the bounded
components Gi are linearly related,

dω∞
dωi

≡ const on ∂Gi.

This provides the tool for estimating the conformal modulus of the annuli obtained from
gluing a chain of squares along (subsets of) their edges: Roughly speaking, loops surrounding
the annulus described above correspond to loops that pass through the balloons in the discrete
approximation, and the defining property of the ballon animal allows to pass information
from the complement of a ballon (measured by ω∞) to the interior of the balloon (measured
by ωi) without distortion. It is then fairly standard to translate such modulus estimates into
analytic control.

It can be shown that the Brownian lamination satisfies the good scale condition of Theorem
1.1 (although it does not satisfy the very good scale good condition). Section 6 contains a
sketch of a proof of Theorem 1.3 along these lines. However, we will not give all the details
because the same strategy also gives a proof of the stronger Theorem 1.4, which we prove in
detail in Section 7.

The strategy is to construct candidate annuli Al (for l = 1, 2, . . . ) in terms of ωl where,
roughly speaking, ωl is the part of the excursion S lying between height λl and λl+1. The
conditions of Theorem 3.9 that ensure the nondegeneracy of Al translate into five simple
conditions Good1,2,3,4,5 on ωl, see Section 6.2, and its discrete counterpart, Section 7.3. We
will define ωl in such a way (see Sections 6.2 and 7.5) that (ωl)l≥1 is a Markov chain. This
allows us to use standard large deviation techniques (Theorem A.3) to show that, with very
high probability, the density of the set of indices l for which ωl ∈ Good1,2,3,4,5 is greater than
1
2
.

The crux of the proof is a long computation (Lemma 7.8) showing that a certain function on
the state space decreases sharply in expectation when the Markov chain transitions from a
state that is not in Good1,2,3,4,5.

Section 2 contains basic definitions and facts from conformal geometry and potential theory.
In Section 3 we state and prove the key conditions needed for the welding of two rectangles
to have bounded modulus, see Propositions 3.2, 3.4. We then develop the notion of chains
that allow us to easily state the good scale conditions, culminating in Theorem 3.9.

The remaining Sections 4, 5, 6, and 7 contain the proofs of Theorems 1.1, 1.2, 1.3, and 1.4
respectively, and are mutually independent, with the exception that Section 1.3 can be a
viewed as a extended outline of the ideas in Section 1.4.

For the convenience of the reader, we give a self-contained presentation of the large deviations
estimate that we need in Appendix A. Some technical estimates for discrete random walks
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needed for Section 1.4 are collected in Appendix B.
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2 Preliminaries

In this section we collect definitions and facts about John domains, quasisymmetric maps,
logarithmic capacity, conformal modulus and uniformly perfect sets, as can be found for
instance in the monographs [Ahl06], [Ahl10], [And04], [GM05], [Hei01], [Pom79]. The expert
may skip this section and return to these results when needed.

2.1 Notation

Throughout this paper we will use the following notation:

C = C ∪ {∞} is the extended complex plane, D is the (open) unit disc, ∆ = C \ D, T = ∂D
the unit circle. Dr(z) = D(z, r) is the disc of radius r centered at z, Cr(z) = ∂Dr(z), and
Cr = ∂Dr(0).

We denote line segments by [a, b], arcs (intervals) on T by (a, b), and geodesics in hyperbolic
domains by < a, b >, and the length of a line segment or arc by |I|.

We write a .λ b to designate the existence of a function C(λ) such that a/b ≤ C(λ), and a . b
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if a ≤ Cb for some constant C > 0. We sometimes say that a statement holds quantitatively if
the associated parameters (domain constants etc.) only depend on the parameters associated
with the data.

2.2 John domains, quasisymmetric maps and Gehring trees

A connected open subset D of the Riemann sphere is a John-domain if there is a point z0 ∈ D
(the John-center) and a constant C (the John-constant) such that for every z ∈ D there is a
curve γ ⊂ D from z0 to z such that

dist(γ(t), z) ≤ Cdist(γ(t), ∂D)

for all t. If ∞ ∈ D, then z0 =∞. An equivalent definition ([Pom92]) is that

(2.1) diamD(σ) ≤ C ′ diamσ

for every crosscut σ of D, where D(σ) denotes the component of D \ σ that does not contain
z0. Moreover, it is enough to consider crosscuts that are line segments.

John domains were introduced in [Joh61] and are ubiquitous in analysis. Simply connected
planar John domains can be viewed as one-sided quasidiscs. Indeed, a Jordan curve is a
quasicircle if and only if both complementary components are John domains. Our main
reference is the exposition [NV93] of Näkki and Väisälä. Important work related to John
domains can be found in [And04],[Jon91],[CJY94],[NV93],[Väi89] and a large number of
references in these works. A planar dendrite is a compact, connected, locally connected subset
T of the plane C with trivial fundamental group.

Definition 2.1. A Gehring tree is a planar dendrite such that the complement is a John-
domain.

Gehring trees are easily described as planar dendrites built from quasiconformal arcs, see
[Ahl06], [Ast09] and [Hei01] for basic definitions and an introduction to quasiconformal
maps. A K−quasiarc is the image of a straight line segment under a K−quasiconformal
homeomorphism of the plane. For every arc γ and all x, y ∈ γ, denote γ(x, y) the subarc
with endpoints x, y. Quasiarcs are characterized by Ahlfors’-condition

(2.2) diam γ(x, y) ≤ K|x− y| for all x, y,

see [Geh12] for a wealth of properties and characterizations of quasiconformal arcs and
discs.

Proposition 2.2. A dendrite T is a Gehring-tree if and only if there is K such that every
subarc α ⊂ T is a K−quasiarc.
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This follows from the well-known fact [NV93] that the complement of a John disk is of
bounded turning. We give a simple direct proof:

Proof. If α ⊂ T is a subarc and x, y ∈ α, then [x, y]\T is a collection of intervals σj = [xj, yj ]
that are crosscuts of D = C \ T. It is easy to see that

α ⊂ [x, y] ∪
⋃
j

D(σj)

so that α satisfies the Ahlfors condition by (2.1).

Conversely, if T is a tree consisting of K−quasiarcs, and if [x, y] is a crosscut of D = C \ T,
then the outer boundary of D([x, y]) is [x, y] ∪ T (x, y), and (2.1) follows from the quasiarc
property of T (x, y).

The notion of quasisymmetry is a generalization of quasiconformality to the setting of metric
spaces, see [Hei01]. An embedding f : X → Y of metric spaces (X, dX) and (Y, dY ) is
quasisymmetric if there is a homeomorphism η : [0,∞)→ [0,∞) such that dY (f(x), f(z)) ≤
η(t)dY (f(y), f(z)) whenever dX(x, z) ≤ tdX(y, z).

If D ( Ĉ is open and connected, the internal metric is defined as

δD(x, y) = inf
γ

diam(γ),

where the infimum is over all curves γ ⊂ D with endpoints x and y. If ∂D is locally
connected, or equivalently if a conformal map f from the disc onto D has a continuous
extension to D, then the completion of (D, δD) coincides with the completion of D via the
prime end boundary, and f extends to a homeomorphism between D and this completion.
For instance, if D is a slit disc, then both sides of the slit give rise to different points in
the closure of (D, δD). John domains are characterized by the quasisymmetry of this extension:

Theorem 2.3 ([NV93], Section 7). A conformal disc D with ∞ ∈ D is a c−John domain
if and only if the conformal map f : ∆→ D that fixes ∞ is quasisymmetric in the internal
metric. Here η depends only on c and vice versa.

John domains are intimately related to the doubling property for harmonic measure. We
will use the following characterization. The proof in ([Pom92], Theorem 5.2) for bounded
domains can easily be modified to cover our situation.

Theorem 2.4. Let f : ∆→ G be a conformal map fixing ∞. Then G is a John domain if
and only if there is a constant β > 0 such that

diam f(A) ≤ 1

2
diam f(I)
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whenever A ⊂ I ⊂ T are arcs of length |A| ≤ β|I|.

Finally, we will need the following result of P. Jones, [Jon91],[NV93].

Lemma 2.5. If D is a John domain, f : D → D a conformal map sending 0 to the John
center, and if D′ ⊂ D is a John domain, then f(D′) is a John domain, quantitatively.

2.3 Logarithmic capacity, conformal modulus and uniformly per-
fect sets

Let µ be a Borel measure of finite nonzero mass on C. The (logarithmic) energy E(µ) of the
measure µ is the extended real number

(2.3) E(µ) =

∫∫
C2

− log |x− y| dµ(x)dµ(y).

The (logarithmic) capacity of a compact set E ⊂ C is the real number

cap(E) = e− infµ E(µ),

where the infimum is taken over all Borel probability measures supported on E. If the
capacity is non-zero, the unique minimizing measure is the harmonic measure at infinity ω∞,
and the Green’s function of C \ E is given by

gE(z) =

∫
E

log |z − w|dω∞(w)− log(capE) = log |z| − log(capE) +O(
1

|z|
).

Important examples are capB(x, r) = r and cap[a, b] = |b− a|/4. The capacity of a Borel set
is defined as the supremum of the capacities of compact subsets.

The conformal modulus M(Γ) of a family of curves Γ is an important conformal invariant,
see [Ahl10, GM05, Pom92]. It is defined as

M(Γ) = inf
ρ

Area(ρ) = inf
ρ

∫
C
ρ2dxdy

where the infimum is over all admissible metrics ρ, namely all Borel measurable functions ρ
with the property that the ρ−length

∫
γ
ρ|dz| ≥ 1 for all γ ∈ Γ.

The proof of Theorem 1.1 relies on estimates of the modulus of continuity of some con-
formal maps. We will employ a standard technique to obtain such estimates. It is based
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on the following relation between the conformal modulus of an annulus and its euclidean
dimensions. Consider a topological annulus A ⊂ C with boundary components A1, A2 and
set r(A) = min(diamA1, diamA2), R(A) = dist(A1, A2). The conformal modulus M(A) is
defined as the modulus of the family of all closed curves γ ⊂ A that separate A1 and A2. For
example, M(A(x, r, R)) = log(R/r)/2π.

Lemma 2.6. There is a constant C such that

|M(A)− 1

2π
log(1 +

R(A)

r(A)
)| ≤ C.

See for instance ([Roh97], Lemma 2.1) for a discussion and references. We will use it in
combination with the subadditivity property of the modulus:

Lemma 2.7. If Aj are disjoint annuli that separate the boundary components of an annulus
A, then M(A) ≥

∑
jM(Aj).

We will also use Pfluger’s theorem which quantifies a close connection between capacity and
modulus, see [Pom92]:

Theorem 2.8. If E ⊂ ∂D is a Borel set and if ΓE is the set of all curves γ ⊂ D joining the
circle Cr to the set E, then

capE � e−π/M(ΓE)

with constants only depending on 0 < r < 1.

Specifically, we will use the following variant whose proof we leave as an exercise: If D =
[0,M ]× [0, 1] is a rectangle, if E ⊂ {M} × [0, 1] is Borel, and if ΓE is the family of curves
that join the left side {0} × [0, 1] to E in D, then

(2.4) capE ≤ C(M)e−π/M(ΓE).

The compact set A is called uniformly perfect if there is a constant c > 0 such that no
annulus A(x, cr, r) with r < diamA separates A : If A ∩ A(x, cr, r) = ∅, then A ⊂ B(x, cr)
or A ∩B(x, r) = ∅. An equivalent definition is the existence of a different but quantitatively
related constant c > 0 such that

capA ∩B(x, r) ≥ cr for all x ∈ A and r < diamA.

See Exercise IX.3 in [GM05] for 13 other equivalent definitions.
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Figure 3.1: Conformal welding of two rectangles

3 Modulus of welded rectangles and annuli

In this section we will develop one of the main tools of the paper, namely a condition on the
conformal gluing of rectangles under which the conformal modulus stays controlled.

3.1 Conformal rectangles

Consider two rectangles D1 = [0,M1]× [0, 1] and D2 = [0,M2]× [0, 1] together with their left
boundaries Lj = {0} × [0, 1] and their right boundaries Rj = {Mj} × [0, 1], j = 1, 2.

It is well-known that, if ϕ is a quasisymmetric homeomorphism between R1 and L2, then
the conformal welding of D1 and D2 via ϕ yields a conformal rectangle of modulus bounded
in terms of M1,M2 and the quasi-symmetry constant. More precisely, there are conformal
rectangles D′1, D

′
2 with disjoint interiors and conformal maps fj : Dj → D′j sending corners to

corners such that f1 = f2 ◦ ϕ on the right boundary R1, and such that D′1 ∪D′2 is a rectangle
[0,M ] × [0, 1] of modulus M ≥ M1 + M2 bounded above in terms of M1,M2 and K, see
Figure 3.1. Note that

M = M(Γ)−1,

where Γ is the family of all pairs of curves (γ1, γ2) such that γi connects Li and Ri in Di, and
the image of the endpoint of γ1 under ϕ coincides with the initial point of γ2 (in other words,
f1(γ1) together with f2(γ2) form a single continuous curve in D′1 ∪D′2).

For our results concerning Gehring trees, it will be sufficient to generalize this to the setting
where a uniformly perfect subset of R1 is welded to a uniformly perfect subset of L2 via a
quasisymmetric map. Thus we make the following definition:

Definition 3.1. A C−rectangle is a triple (D,A,B), where D = [0,M ]× [0, 1] is a rectangle
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with 1/C ≤M ≤ C, where A (resp. B) is a 1/C−uniformly perfect subset of the left (resp.
right) boundary {0}× [0, 1] (resp. {M}× [0, 1]), and where diamA ≥ 1/C and diamB ≥ 1/C.
Any conformal image onto a simply connected domain is called a conformal C−rectangle,
where now A and B have to be interpreted as sets of prime ends.

Proposition 3.2. If (D1, A1, B1) and (D2, A2, B2) are C−rectangles and if ϕ : B1 → A2 is
an increasing K−quasisymmetric homeomorphism, then

M(Γ)−1 ≤M(C,K),

where Γ is the family of pairs of curves (γ1, γ2) joining A1 to B2 through ϕ(B1) = A2 such
that the image of the endpoint of γ1 under ϕ is the initial point of γ2.

Notice that this implies, by the monotonicity of the modulus of curve families, that every
welding of D1 and D2 which extends ϕ has modulus bounded above and below, independent
of the extension of ϕ from B2 to A1.

For applications to less regular settings, we need the following further generalization to an
equivalence relation ∼ on R1 ∪ L2, and the family Γ of pairs (γ1, γ2) joining L1 to R2 in the
disjoint union of D1 and D2 such that the endpoint of γ1 is equivalent to the initial point of γ2.

Definition 3.3. A pair µ1, µ2 of probability measures supported on R1 and L2 respectively is
called a gluing pair for (D1, L1, R1) and (D2, L2, R2) if there is a measure preserving bijection
φ between measurable subsets B1 of R1 and A2 of L2 of full measure, µ1(B1) = µ2(A2) = 1,
such that φ(x) ∼ x for all x ∈ B1.

Proposition 3.4. The family Γ of pairs (γ1, γ2) joining L1 to R2 such that the endpoint of
γ1 is equivalent to the initial point of γ2 satisfies

(3.1) M(Γ)−1 ≤ C0(M1,M2) inf
µ1,µ2

max (E(µ1), E(µ2)) ,

where the infimum is taken over all gluing pairs of measures as above, and E denotes
logarithmic energy.

Proof. Let ρ = (ρ1, ρ2) be a metric on the disjoint union D1 tD2 where ρi : Di → R+ and
let µ1, µ2 be Borel probability measures supported on B1 ⊂ R1 and A2 ⊂ L2 respectively
together with a measure preserving bijection φ as above. Let E1 ⊂ B1 be the set of points p
such that every curve γ1 ⊂ D1 from L1 to p has ρ1−length at least 1, and define E2 ⊂ A2

similarly so that the ρ2−length of all curves from E2 to R2 is at least 1. By Pfluger’s theorem
(2.4) we have

capEi ≤ C(Mi)e
−π/M(ΓEi ) ≤ C(Mi)e

−π/Area(ρi) ≤ e−π/Area(ρi)+C0
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for suitable C0. Assume that

(3.2) Area(ρi) ≤
π

16 E(µi) + C0

for both i = 1, 2, so that capEi ≤ exp(−16 E(µi)). Then

(3.3) µi(Ei) ≤ 1/4 :

Indeed, since − log |x − y| ≥ 0 for all x, y ∈ [0, 1], we have E(µi) ≥ E(µi|Ei), and since
µi|Ei/µi(Ei) is a probability measure, we have

− log capEi ≤ E(µi|Ei/µi(Ei)) =
E(µi|Ei)
µi(Ei)2

≤ E(µi)

µi(Ei)2
≤ − log capEi

16µi(Ei)2
.

Since φ is measure preserving we thus have µ1(E1 ∪ φ−1(E2)) ≤ 1/2 and in particular
B1 \ (E1 ∪φ−1(E2)) is non-empty. Let p be a point of this set. Then there are curves γ1 ⊂ D1

respectively γ2 ⊂ D2 joining L1 to p respectively φ(p) to R2 such that both ρi−lengths of γi
are < 1. Thus the metric ρ/2 = (ρ1/2, ρ2/2) is not admissible for Γ. It follows that every
admissible metric ρ has

4Area(ρ) ≥ max
i

Area(2ρi) ≥
π

16 E(µi) + C0

and the proposition follows.

Proposition 3.2 can be proved similarly, using the simple fact that ϕ has a quasisymmetric
extension Φ to R1 and therefore is Hölder continuous, and sends sets of small capacity to
sets of small capacity. It can also be viewed as a direct consequence of Proposition 3.4, since
the energy of the equilibrium measure µ1 of B1 is bounded, and by the Hölder continuity of
φ−1, the energy of the push-forward µ2 of µ1 under ϕ has bounded energy as well.

The following lemma explains how Proposition 3.4 will be applied to the Brownian lamination.
For the remainder of the section, we will write D+ = [0,M+]× [0, 1], D− and µ+, µ− instead
of D1, D2, µ1, µ2 and so on.

Lemma 3.5. Fix x ∈ (0, 1) and let I− = (0, x) ⊂ T and let I+ = (x, 1) ⊂ T. Let
e : [0, 1]→ R+ be a (C, α)-Hölder continuous excursion and let ∼e be the lamination on T
induced by e. There are measures µ−, µ+ supported on measurable subsets E−, E+ of I−, I+

and a measurable measure preserving bijection f between E− and E+ such that t ∼e f(t) for
all t ∈ E− and

(3.4) max
(
E(µ+), E(µ−)

)
≤ 1

α

(
3/2 + log e(x)−1 + logC

)
.
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Proof. Let m be the Lebesgue measure on [0, e(x)] normalized so that |m| = 1. Note that
E(m) = E(m[0,1])− log e(x) = 3/2− log e(x) where m[0,1] is the Lebesgue measure on [0, 1].

Define the one-sided inverse functions e−, e+ on [0, e(x)] by e−(y) = sup{t ≤ x : e(t) =
y} and e+(y) = inf{t ≥ x : e(t) = y}, see Figure 3.2. Let E− ⊂ I− and E+ ⊂ I+

be the image of [0, e(x)] under e− and e+ respectively. Define the measures µ+, µ− on
[0, 1] by µ+(A) = m(e(A ∩ E+)) and µ−(A) = m(e(A ∩ E−)). Since e is (C, α)-Hölder
continuous, (2.3) shows that µ+ and µ− both have energy bounded above by 1

α
E(m)+ 1

α
logC =

1
α

(3/2 + log e(x)−1 + logC).

Define the bijection f : E− → E+ by f(t) = e+(e(t)). Notice that mint≤s≤f(t) e(s) = e(t) =
e(f(t)), so by definition of ∼e we have t ∼e f(t). We also have µ−(A) = m(e(A ∩ E−)) =
m(e(e−(e(A ∩ E−)))) = m(ef−1(A ∩ E−)) = µ+(f−1(A)) for all Borel A ⊂ [0, 1]. Thus µ−

and µ+ are the desired measures.

Figure 3.2: If e is a continuous excursion then for any fixed x we can construct a gluing pair
of measures (µ+, µ−) by pushing forward normalized Lebesgue measure on [0, e(x)] via the
one-sided inverses of e.

In the deterministic setting of Section 5 below we will need the following variant of the
modulus estimate Proposition 3.4. It gives control over the modulus in the setting where
finitely many equivalence classes have been conformally contracted to points.

Consider finite partitions

R+ =
⋃
j

Ij and L− =
⋃
k

Jk

of the boundary segments of D+ and D− into disjoint intervals such that each endpoint of
each Ij is equivalent under ∼ to an endpoint of some Jk, and conversely every endpoint of
Jk is ∼ to some endpoint of some Ij. For each Ij = [αj, βj], either both endpoints are ∼ to
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the same point on L− (and consequently αj ∼ βj), or there is a unique interval Jk = [γk, δk]
of the second partition such that αj ∼ γk and βj ∼ δk. We may re-label the Ij and Jk so
that j = k for some m and 1 ≤ j ≤ m, and for j > m the Ij are of the first type (αj ∼ βj).
Consider the abstract Riemann surface R obtained from the disjoint union D+ t D− as
follows: For each of these pairs Ij, Jj with j ≤ m, glue a unit disc Bj, to D+ t D− along
Ij tJj , such that the arclength of ∂Bj is proportional to arclength on Ij and on Jj, where the
proportionality constants are determined by the requirement that the normalized arclength
(harmonic measure ωBj at the center of the disc) of Ij and Jj on ∂Bj is 1/2 each. And for each
arc Ij, Jj with j > m just glue in a disc arbitrarily (for instance again with harmonic measure
proportional to arclength), see Figure 3.3, and see also Figure 5.3 below for motivation. We
have

Proposition 3.6 (Balloon animal lemma). Let Γ be the family of curves that join L+ and
R− in R. Then

(3.5) M(Γ)−1 ≤ C0(M+,M−) inf
µ+,µ−

max
(
E(µ+), E(µ−)

)
where the infimum is taken over all gluing pairs of measures.

We prepare the proof with the following

Lemma 3.7. Fix 0 < a < 1 and suppose B is a Borel subset of [0, a]. Then for any Borel
probability measure µ on [0, 1], we have

µ(B) ≤ C1E(µ)1/2M(ΓB)1/2,

where ΓB is the set of paths in the square [0, a]2 joining the “top edge” [0, a] + ai to B, and
C1 is a universal constant.

Proof. Since E(rµ)1/2 = rE(µ)1/2 we may assume that µ is a probability measure supported
on B. First assume that a = 1. Then the definition of capacity and Pfluger’s theorem (2.4)
yield

e−E(µ) ≤ cap(B) ≤ e−π/M(ΓB)+C0

where C0 is a universal constant. Thus E(µ) + C0 ≥ π
M(ΓB)

and we obtain E(µ)M(ΓB) ≥
π/(1 + C0/ log 4) since E(µ) ≥ − log cap[0, 1] = log 4.

Now suppose a 6= 1. The map x 7→ x/a maps B onto a subset B/a of [0, 1] and maps µ onto
a measure µa with energy E(µ) + log a ≤ E(µ). The inequality for a = 1 yields

µa(B/a) ≤ C1(E(µ))1/2M(ΓB/a)
1/2

which implies the desired result since the modulus is dilation invariant.
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Now we are ready to prove Proposition 3.6

Proof. Let µ−, µ+ be finite energy Borel probability measures on R+, L− which form a gluing
pair as above. The Riemann surface R is a quotient of the two squares D+, D−, a number of
discs Bi, i = 1, . . . ,m, and further discs (corresponding to intervals with equivalent endpoints)
that do not play a role in the proof. For each disk Bi, we cut out a concentric disk B◦i of
radius e−π so that the remaining annulus is a quotient of two squares as in Figure 3.3. Let
B+
i denote the “left square” and let B−i be the “right square” in this decomposition.

Let ρ be a metric on R, given by a non-negative function on D+, D−, the Bi, and the
remaining discs. As in the proof of Proposition 3.4, let E+ ⊂ R+ be the set of points
p such that every curve γ1 ⊂ D+ from L+ to p has ρ−length at least 1, and similarly
E− ⊂ L− so that the ρ−length of curves from E− to R− is ≥ 1. By (3.2) and (3.3) we have
µ+(E+ ∪ φ−1(E−)) ≤ 1/2 if Area(ρ) ≤ min( π

16 E(µ+)+C0
, π

16 E(µ−)+C0
), where C0 depends on

the moduli M± of D±.

Note that for each i, the interval Ii is the left edge of the square B+
i . Let E+

i ⊂ Ii be the set
of points p ∈ Ii for which infγ `ρ(γ) ≥ 1, where the infimum is taken over all paths γ from x
to the right edge ∂B+

i ∩ B◦i of B+
i . Applying Lemma 3.7 to the set E+

i , the measure µ+|Ii
and the family of curves ΓE+

i
joining points of E+

i to right edge of B+
i inside B+

i yields

µ+(E+
i ) ≤ C1E(µ+|Ii)1/2M(ΓE+

i
)1/2.

On the other hand, the definition of E+
i implies that ρ|Bi is admissible for ΓE+

i
so that

MB+
i

(ΓE+
i

) ≤ Area(ρ|Bi). Summing over i and using Cauchy-Schwarz yields∑
i

µ+(E+
i ) ≤ C1

∑
i

E(µ+|Ii)
∑
i

Area(ρ|Bi) ≤ C1Area(ρ)E(µ+).

It follows that µ+
(
∪iEi+

)
≤ 1

8
if Area(ρ) ≤ 1

8C1
E(µ+)−1, and similarly for µ−.

The rest of the proof proceeds in a similar way to Proposition 3.4: If

Area(ρ) ≤ min(
π

16 E(µ+) + C0

,
π

16 E(µ−) + C0

,
1

8C1

E(µ−)−1,
1

8C1

E(µ+)−1),

then there exists i = 1, . . . ,m and paths γ1, γ2, γ3, γ4 in R such that

• `ρ(γj) ≤ 1 for each j.

• γ1 is a continuous path from the left edge L+ to the right edge R+ of D+.

• γ2 is a continuous path from R+ to the “right” edge of B+
i .

• γ3 is a continuous path from “left” edge of B−i to L−.
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• γ4 is a continuous path from L− to R−.

• The concatenations γ1γ2 and γ3γ4 are continuous.

Since the modulus of the annulus Bi\B◦i is 1/2, (being the gluing of two squares), if Area(ρ) ≤
2, then there exists a loop γ5 of ρ-length less than 1 around this annulus. This loop must
intersect both γ2 and γ3.

We conclude that if Area(ρ) ≤ C(M+,M−) min(E(µ−)−1, E(µ+)−1) ∧ 2, there is a path γ
from L1 to R2 in R with ρ-length less than 5.

Figure 3.3: Every pair of partitions with equivalent end points gives rise to a Riemann surface
R (middle). This “balloon animal” can be viewed as a gluing of squares and disks (right).

3.2 Chains of rectangles and conformal annuli

In this section we will apply the results of the previous section to obtain modulus estimates
for annuli that are formed by conformal welding of several rectangles. We will first set up
some notation and then describe sets of conditions that allow control of the modulus. Fix an
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equivalence relation ∼ on T.

Definition 3.8. A chain link is a pair of disjoint closed intervals J− = [a−, b−], J+ =
[a+, b+] ⊂ T such that some point of J− is equivalent to some point of J+. Often (but not
necessarily) the endpoints will be equivalent, a− ∼ b+ and a+ ∼ b−, which explains some of our
terminology. Form ≥ 1, anm−chain C is a collection ofmmutually disjoint chain links J−i , J

+
i

such that the intervals are in cyclic order on the circle, a−1 < b−1 < a+
1 < b+

1 < a−2 < ... < a+
m.

Associate with a chain the conformal rectangles Di ⊂ C bounded by J+
i , J

−
i+1 and the two

hyperbolic geodesics from a+
i to b−i+1 and from b+

i to a−i+1, where indices are to be taken mod
m so that Jm+1 = J1. The chain-annulus is

A(C) =
m⋃
i=1

Di.

The curve family Γ(C) consists of the m−tuples (γ1, γ2, ..., γm) of curves γi ⊂ Di such that
for each 1 ≤ i ≤ m, the endpoint of γi is equivalent to the initial point of γi+1.

Note that if ∼ is the conformal lamination of a dendrite and if the endpoints of the links
of a chain are equivalent, then the conformal image of A(C) is a topological annulus. As
we are interested in the modulus of such an annulus, we want to estimate the modulus of
Γ(C). We will now describe a set of conditions, involving a parameter L, that give control
over M(Γ(C)).

Condition 1: All (Di, J
+
i , J

−
i+1) are conformal L−rectangles. This is easily seen to follow

from an estimate of the form

(3.6) |a−i+1 − b+
i | .L |J+

i | �L |J−i+1|.

Condition 2: The lamination is L−thick between J−i and J+
i : We require that there are

Borel measures µ−i and µ+
i supported on J−i and J+

i , together with a measure preserving
bijection φi between measurable subsets B−i of J−i and A+

i of J+
i of full measure, such

that

(3.7) max
(
E(µ̂−i ), E(µ̂+

i )
)
≤ L,

where µ̂ denotes the probability measure on [0, 1] obtained from µ by linear scaling.

Condition 3: We require a bound on the number of links of the chain,

(3.8) m ≤ L.

Applying Proposition 3.4 m−times yields
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Theorem 3.9. If Conditions 1-3 are met, then

(3.9) M(Γ(C))−1 .L 1.

In particular, if f is a conformal map realizing the lamination ∼, then f(A(C)) contains an
annulus of modulus bounded away from 0.

Applying Proposition 3.6 instead of Proposition 3.4, we obtain the following variant.

Theorem 3.10. Given an m−chain together with partitions of the J±i into disjoint intervals
such that the endpoints of intervals in J− are equivalent to endpoints of intervals in J+ and
vice versa. Form a Riemann surface by gluing Di to Di+1 along discs as in Proposition 3.6,
for all 1 ≤ i ≤ m. If Conditions 1-3 are met, then the family Γ of closed curves that visit
L1, R1, L2, R2, ..., Rm in this order has

(3.10) M(Γ)−1 .L 1.

We conclude this section by stating the definition of good scales that depends on a parameter
L, in the notation that is most suitable for the probabilistic context.

Definition 3.11. A number 0 < r < 1 is a good scale for a point x ∈ T, if there is an
m−chain (J−i , J

+
i ) with b+

1 < x < a−2 and |J+
1 | �L r such that the above conditions 1-3 hold.

Notice that in the notation of Theorem 1.1, the m−chain is formed by the chain links
(Ij, I

′
j+1).

Also, a ‘good scale’ in the sense of Theorem 1.1 is a good scale in the sense of Definition 3.11,
but not necessarily vice-versa. Calling the ‘good scales’ of the introduction ‘very good scales’,
Theorem 1.1 and Theorem 1.2 are both true with either definition. In particular, combining
Theorem 1.1 for good scales and Theorem 1.2 for very good scales gives the self improvement
that if every scale is good then actually every scale is very good.

4 Gehring trees have quasisymmetric weldings

4.1 Localization of Gehring trees

The main result of this section is the following decomposition of annuli centered at a Gehring
tree into conformal rectangles that are cyclically glued as in Proposition 3.2. Throughout
this section we denote K = K(T ) the constant of the Gehring tree.
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Proposition 4.1. For every Gehring tree T there are constants K1, N,M and C (depending
only on K) such that for every p ∈ T and every 0 < r < diamT/C there are disjoint
conformal C−rectangles (Di, Ai, Bi), i = 1, 2, ..., n where

(4.1) n ≤ N,

(4.2) Di ⊂ (C \ T ) ∩ {z : r < |z − p| < Cr},

(4.3) Ai, Bi ⊂ T, and Ai+1 = Bi

(4.4) the “horizontal sides” of the Di are geodesics of C \ T,

(4.5) The set ∪ni=1 Di separates 0 and ∞.

Moreover, for every i, if (D′i, A
′
i, B

′
i) denotes a rectangle conformally equivalent to (Di, Ai, Bi),

then

(4.6) there is a K1 − quasisymmetric homeomorphism between B′i and A′i+1.

Notice that the index i+ 1 in (4.3) and (4.6) has to be interpreted modulo n, so that Dn glues
back to D1. In particular, if n = 1, the two vertical sides of D1 are glued together.

Figure 4.1: The conformal rectangles Di of Proposition 4.1. The dashed boundary components
are hyperbolic geodesics of Ĉ \T and correspond to the horizontal boundary of the rectangles.
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The proof of Proposition 4.1 requires some preparation. Assume p = 0 ∈ T , diamT > R,
and denote A(r, R) = {r < |z| < R}. Fix a connected component D of A(r, R) \ T. We say
that D crosses A(r, R) if D ∩ Cr and D ∩ CR contain non-trivial intervals. The boundary of
D contains two arcs ∂`D and ∂hD of T joining Cr and CR, where ` stands for “lower” and
h for “higher” in logarithmic coordinates. They can be defined formally as follows: Since
diamT > R, the closed set T ∪ Cr ∪ CR is connected and D is simply connected, so that a
continuous branch of log z is well-defined on D. There is an arc γ′ = log γ in logD joining
the lines x = log r and x = logR. The set {log r < x < logR} \ logD has two unbounded
components. Both unbounded components have boundary consisting of a crosscut σ together
with two half-infinite vertical lines. Denote σ` resp. σh the lower resp. higher of these two
crosscuts (they are disjoint because they belong to different complementary components of
γ′). Finally denote ∂`D and ∂hD the images of σ` and σh under the exponential function.
Note that they can be disjoint, identical, or neither.

The following lemma is the key to the inductive construction of the conformal rectangles.
Consider three disjoint curves γj that cross the annulus A(r1, r2). We say that γ1 lies between
γ2 and γ3 if the endpoints of γ2, γ1, γ3 are positively oriented on the circle. Thus γ1 either
crosses between γ2 and γ3, or between γ3 and γ2, but not both. We use the same terminology
for disjoint connected subsets of A(r1, r2) that cross the annulus.

Lemma 4.2. For every M > 0 there exists a constant C = C(M,K(T )) such that the
following holds: If D1 and D2 are not necessarily distinct components of A(r, R) \ T that
cross A(r, R) and if ∂hD1 ∩ ∂`D2 does not contain an arc of diameter > Mr, then there exists
a component D3 crossing A(Cr,R) between ∂hD1 and ∂`D2.

Proof. If ∂hD1 ∩ ∂`D2 does not contain an arc of diameter > Mr, then ∂hD1 and ∂`D2 are
disjoint in A(Cr,R) for sufficiently large C : Suppose not, then there would be a point
x ∈ ∂hD1 ∩ ∂`D2 ∩ A(Cr,R). Consider the points xh ∈ ∂hD1 ∩ Cr, x` ∈ ∂`D2 ∩ Cr and the
“center” x′ of the “triangle” on T with vertices x`, xh and x,

x′ = T (x`, xh) ∩ T (x`, x) ∩ T (xh, x).

Since T (x, x′) ⊂ ∂hD1 ∩ ∂`D2, it follows that diamT (x, x′) ≤ Mr, hence |x′| > (C −M)r.
Thus

diamT (x`, xh) > (C −M − 1)r ≥ C −M − 1

2
|x` − xh|,

contradicting the quasiarc property (2.2) if (C −M − 1)/2 > K.

A similar argument shows that there is no subarc of T joining ∂hD1 and ∂`D2 inside A(Cr,R).
Hence there is a curve γ ⊂ A(Cr,R) \ (T ∪D1 ∪D2) between ∂hD1 and ∂`D2 from CCr to
CR. The component of A(Cr,R) \ T containing γ is the required D3.

We will need the following bound on the number of components that can cross an annulus.
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Lemma 4.3. If R/r ≥ 4K, then the number of components of A(r, R) \ T that cross A(r, R)
is bounded above by N = 8Kπ.

Proof. Denote D1, ..., Dn the components that cross A(r, R). The arcs ∂`Di meet Cr resp.
CR in points a`,i resp. b`,i and similarly ∂hDi meet Cr resp. CR in points ah,i resp. bh,i. The
n arcs of CR between b`,i and bh,i are pairwise disjoint. Consequently, if dj = |b`,j − bh,j| is
minimal among di, 1 ≤ i ≤ n, then dj ≤ 2πR/n. By the Ahlfors condition (2.2),

diamT (b`,j, bh,j) ≤ K
2πR

n
.

In particular, the arc γ ⊂ T that joins ∂`Dj and ∂hDj is of distance ≤ K 2πR
n

from CR, hence
of distance

d ≥ R− r −K 2πR

n
from Cr. Since a`,j and ah,j connect through the same arc γ, we have

diamT (a`,j, ah,j) ≥ d ≥ R

2

if R > 4r and n > 8πK. On the other hand,

diamT (a`,j, ah,j) ≤ K|a`,j − ah,j| ≤ K2r <
R

2

if R > 4Kr, and we conclude that n ≤ 8πK whenever R/r > 4K.

Next, still assuming that 0 ∈ T we will construct a chain of domains Di that already has
most of the desired features of Proposition 4.1, namely (4.1),(4.2), (4.4) and (4.5).

Lemma 4.4. For all M and K there are constants C1 and C2 such that whenever R =
C2r < diam T , then there are domains D1, D2, ..., Dn in A(r, R) with n ≤ N = 8Kπ that
are all crossing A(C1r, R) and satisfy the following: Each Di is a connected component of
A(Cnir, R) \ T for some 0 ≤ ni ≤ N, each intersection ∂hDi ∩ ∂`Di+1 (where Dn+1 = D1)
contains an arc αi of diameter ≥M max(Cnir, Cni+1r), and ∪iDi separates A(r, R).

Proof. Set C1 = C8πK where C is the constant of Lemma 4.2, and C2 = 4KC1. Fix a
component D1 crossing A(r, R). If ∂hD1 ∩ ∂`D1 contains an arc of diameter ≥Mr, set n = 1
and we are done. Else, by Lemma 4.2, there is a component D2 crossing A(Cr,R) between
∂hD1 and ∂`D1. Note that D1 also crosses A(Cr,R). If the pair D1, D2 does not satisfy the
claim, repeated application of Lemma 4.2 (relabeling the domains if necessary to keep the
cyclic order) yields a sequence of disjoint domains D1, ..., Dn that all cross A(Cn−1r, R). By
Lemma 4.3, this process has to stop when n ≤ N = 8Kπ. Joining a point of ∂hDi−1 ∩ ∂`Di

with a point of ∂hDi ∩ ∂`Di+1 by a Jordan arc in Di, we obtain a Jordan curve in ∪iDi

separating Cr and CR.
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Next, we slightly modify the Di to turn them into conformal rectangles of controlled modulus
with geodesic boundaries. Roughly speaking, since we have no lower bound for the size of the
“inner boundary” ∂Di ∩Cr of Di, we just replace it by a larger arc: By construction, each Di

is a connected component of A(Cnir, R)\T . Consider the component of Di∩A((Cni + 1)r, R)
that joins the two boundary circles, and let I1 be the arc on C(Cni+1)r that separates CCnir and
CR. By the Ahlfors condition, the length of I1 is comparable to Cnir. Let γ1 be the hyperbolic
geodesic of C \ T joining the two endpoints a1,i, b1,i of I1 (viewed as prime ends). Then the
diameter of γ1 is comparable to Cnir (the upper bound follows from the Gehring-Hayman
inequality, the lower bound from the Ahlfors-condition),

diam γ1 ≤ C0C
nir.

Furthermore, the distance of γ1 to 0 is comparable to Cnir and hence greater than a constant
times r. Similarly, let I2 be the arc on CR that separates CCnir and ∞, and let γ2 be the
geodesic joining the endpoints a2,i, b2,i of I2. The diameter of γ2 is comparable to R, again by
the Gehring-Hayman inequality. Now let D′i be the connected component of C \ T bounded
by γ1 and γ2. These are the domains of Proposition 4.1. Notice that properties (4.1),(4.2),
(4.4) and (4.5) are satisfied by Lemma 4.4. Notice also that the set

αi \D(0, (Cni + 1)r)

contains an arc α′i of diameter comparable to r,

diamα′i ≥ (MCnir − 2(Cni + 1)r)/2,

and that this arc is contained in ∂hD
′
i ∩ ∂`D′i+1.

To simplify notation, from now on we will drop the prime and will simply write Di and αi in-
stead of D′i and α′i. Assume without loss of generality counterclockwise ordering of a1, b1, b2, a2,
and notice that the conformal modulus of the topological rectangles (Di, a1, b1, b2, a2) is
bounded above and below : This can easily be seen using Rengel’s inequality

w2

areaD
≤M ≤ areaD

h2
,

where w and h are the distances between the opposite pairs of sides. Indeed, the sides (a1, b1)
and (b2, a2) trivially have distance of order R− Cnir, and the sides (b1, b2) and (a2, a1) have
distance of order Cnir again by the Ahlfors condition. The area is of order R2, since the
diameter of γ2 is of order R.

We will now turn to the construction of the sets Ai, Bi. Since Di and Di+1 connect through
the arc αi ⊂ T , we will define Bi as a subset of αi. It can be shown that (Di, αi−1, αi) is a
conformal (M,C)-rectangle for suitable constants (only the uniform perfectness of the image
of α under a conformal map onto a rectangle would require proof). But this is NOT the
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appropriate choice of Bi: Indeed, every triple point on α corresponds to two prime ends on
one side and one prime end on the other side of α, so that the choice Bi = Ai+1 = α does
not even allow for a bijection between the corresponding sets in rectangular coordinates,
see Figure 4.1 . To obtain a homeomorphism, we need to avoid the branch points of T .
Roughly speaking, to obtain a quasisymmetric homeomorphism, we need to stay away from
the branch points in the following quantitative way: If β is a branch of T branching off a
point x in the interior of α (not one of the two endpoints), then we need to remove an interval
of size proportional to diam β from α. More precisely, since α is a quasiconformal arc, there
is a global quasiconformal map F that sends α to the interval [0, 1] on the real line. For
every component β of T \ α with β ∩ α 6= ∅, the intersection consists of a single point xβ.
Denote

`β = diamF (β).

We will show that for sufficiently small δ > 0, the set

(4.7) Bi = Ai+1 = F−1
(

[0, 1] \
⋃
β

[F (xβ)− δ`β, F (xβ) + δ`β]
)

satisfies the requirements of Proposition 4.1. We begin by describing a set of assumptions
guaranteeing that such a set it non-empty. A picturesque description of the situation is as
follows: Suppose trees (vertical line segments of length `β) grow from the forest floor (the
interval [0, 1]) in such a way that they are not too close to each other: The distance between
two trees is bounded below by a constant times the height of the smaller tree. Each tree
casts a shadow of size proportional to its height. Then there are many sunny places on the
forest floor (assuming this proportionality constant is small). More generally (corresponding
to branch points of order more than three) we need to allow for a bounded number of trees
to get close. A precise statement is the

Sunny Lemma 4.5. For every integer N ≥ 1 and real M > 0 there are δ = δ(N,M) and
c = c(N,M) such that the following holds: Suppose S = {(xn, `n)} is a collection of pairs
(x, `) ∈ [0, 1]× (0,M ] with the property that for every interval I = [a, b] ⊂ [0, 1], the number
of pairs (x, `) ∈ S with x ∈ [a, b] and ` ≥M |b− a| is ≤ N. Then

[0, 1] \
⋃

(x,`)∈S

[x− δ`, x+ δ`]

contains a c−uniformly perfect set of diameter at least 1/2.

Proof. Set

r =
1

4N + 4

and fix

δ <
1

2(4N + 4)M
.
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Beginning with L0 = {[0, 1]}, inductively construct a nested collection Ln of disjoint “po-
tentially sunny intervals” of size rn as follows: Fix I ∈ Ln and subdivide I into 4N + 4
equal sized intervals of size rn+1. By assumption, there are at most N intervals (“shadows”)
[x − δ`, x + δ`] for which x ∈ I and Mrn < ` ≤ Mrn−1. By the definition of δ, each of
these shadows [x− δ`, x+ δ`] will intersect at most two (adjacent) of the 4N + 4 intervals.
In addition, there are at most two more of the 4N + 4 intervals that intersect a shadow
[x− δ`, x+ δ`] with x /∈ I and Mrn < ` ≤Mrn−1 (one on either endpoints of I). Hence there
are at least 2N + 2 intervals remaining, and they constitute the collection of the intervals of
Ln+1 that are in I. In particular, it follows that

(4.8) diam
⋃

J∈Ln+1,J⊂I

≥ 1/2 diam I.

By construction

A =
⋂
n

⋃
I∈Ln

I ⊂ [0, 1] \
⋃

(x,`)∈S

[x− δ`, x+ δ`],

and it is easy to see that A is uniformly perfect: If x ∈ A and if the annulus A(x;R1, R2)
separates A where R1 < R2 ≤ 1, then consider the minimal n for which rn < 4R1, and
denote In(x) the interval of Ln that contains x. By (4.8), the interval In−1(x) contains a
second interval J ∈ Ln of distance more than 1/4rn−1 and less than rn−1 from In(x). Thus
A(x;R1, R2) separates I ∩ A and J ∩ A, which yields an upper bound on R2/R1.

Returning to the definition (4.7) of Bi, we claim that the collection {(F (xβ), `β)} satisfies the
assumptions of Lemma 4.5, where `β = diamF (β). To this end, let us first notice that by the
quasisymmetry of F , there is an upper bound `β ≤M that only depends on K(T ): Indeed,
all arcs β are contained in Di ∪Di+1 so that diam β ≤ diamDi ∪Di+1 . diamα. Next, fix
an interval [a, b] ⊂ [0, 1] and consider an arc β with F (xβ) ∈ [a, b] and `β > M |b− a|. Then
the quasisymmetry of F implies that

diam β ≥M ′ diamF−1[a, b]

where M ′ is large when M is large, and since T is a Gehring tree there is an upper bound N
on the number of such arcs. Thus the assumptions of the sunny Lemma 4.5 are satisfied, and
for sufficiently small δ the set [0, 1] \

⋃
β[F (xβ)− δ`β, F (xβ) + δ`β] is uniformly perfect and

of diameter ≥ 1/2. Consequently the image under F−1 is uniformly perfect (quasiconformal
maps distort moduli of annuli only boundedly) and of diameter comparable to diamαi. We
will also need the following

Lemma 4.6. The internal distance di of Di and the euclidean distance are comparable on
Ai ∪Bi.

Proof. Let x, y ∈ Bi, viewed as prime ends of Di. We need to show that di(x, y) . |x− y|.
Recall the bounded turning property of the John domain C \ T : By Theorem 6.3 of [NV93],
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the smaller of the two arcs of ∂∗T between x and y has diameter comparable to the internal
distance between x and y in C \ T , which is easily seen to be comparable to the internal
distance of Di. This smaller arc is of the form

α(x, y) ∪
⋃

xβ∈α(x,y)

β,

where the union is over all components β of T \ α with β ∩ α 6= ∅ and β ⊂ Di. Since x ∈ Bi

we have
|F (x)− F (xβ)| ≥ δ diamF (β)

so that
|x− xβ| ≥ δ′ diam β

by quasisymmetry of F , and similarly for y. It follows that any arc β with xβ between x and
y has diameter bounded by a constant times |x− y|, and the Lemma follows in this case. If
both x and y are in Ai, the proof is the same. In case x ∈ Bi and y ∈ Ai, both the euclidean
and the internal distance of x and y are bounded above and below, and there is nothing to
prove.

Conclusion of the Proof of Proposition 4.1. We have already established the existence of
constants K1, N,M,C and defined the domains Di and sets Ai, Bi ⊂ ∂Di ∩ T satisfying (4.1)
- (4.5). It only remains to show that the topological rectangles (Di, Ai, Bi) are conformal
(M,C)−rectangles, and to verify (4.6). Recall that we already showed that the conformal
modulus of the topological rectangle (Di, a1, b1, b2, a2) is bounded above and below, where
the four marked points (a1, b1, b2, a2) are the endpoints of αi and αi−1, namely αi = T (a1, a2)
and αi−1 = T (b1, b2). Since the diameter of Bi is comparable to the diameter of αi, and the
diameter of Ai is comparable to diamαi−1, the same argument using Rengels inequality shows
that the conformal modulus of (Di, Ai, Bi) is bounded above and below (away from zero).

Now let gi be the conformal map of Di onto the rectangle Ri = [0, Xi]× [0, 1] that takes the
extreme points of Ai resp Bi to the left resp. right vertices. Since the modulus Xi is bounded
above and below, the rectangle is a John domain with bounded constant. By Theorem
7.4 of [NV93], g is a quasisymmetric map between Di and R with respect to the internal
metric di of Di. It easily follows that gi(Ai) and gi(Bi) are uniformly perfect with constant
only depending on those of Ai and Bi, and the quasisymmetry data. Finally, the required
homeomorphism between gi(Bi) and gi+1(Ai+1) is simply given by the restriction of gi+1 ◦ gi
to Bi, which is quasisymmetric by two applications of the aforementioned Theorem 7.4 of
[NV93], combined with the bilipschitz-continuity of the restriction to Bi of the identity map
on ∂Di ∩ ∂Di+1 with respect to the internal metrics of Di and of Di+1, again using Lemma
4.6.
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4.2 Proof of Theorem 1.2

Most of the work has already been done by proving Proposition 4.1. Let L be the lamination
of a Gehring tree T and f : C \ D → C \ T a conformal map fixing ∞. Given x ∈ T and
a scale 0 < ρ < ρ0 (where ρ0 will be specified later), let I be the arc of T of length ρ with
initial point x. Applying Proposition 4.1 to p = f(x) and

r =
diam f(I)

C
,

we obtain conformal (M,C)-rectangles (Di, Ai, Bi) separating the annulus A(p; r, Cr), ar-
ranged in counter-clockwise order. We may assume the labeling is such that the prime end
boundary of D1 contains points of f(I). Recall the definition of the points a1,i, a2,i, b1,i, b2,i,

introduced during the construction of Di right after Lemma 4.4, and denote â1,i, â2,i, b̂1,i, b̂2,i

their preimages under f. The preimages

D̂i = f−1(Di)

are bounded by the two arcs [â1,i, â2,i] and [b̂1,i, b̂2,i] on T together with the hyperbolic

geodesics < â1,i, b̂1,i > and < â2,i, b̂2,i > of C \ D, see Figure 4.2.

Figure 4.2: The preimages D̂i = f−1(Di)

Set p1 = p, for each i = 2, 3, ..., n fix any point pi ∈ [a1,i, b1,i] ⊂ T (for instance pi = [a1,i]),
and for i = 1, 2, ..., n let

Ii = [b2,i, pi] , I ′i = [pi, a2,i].

Since the conformal modulus of (D, a1, b1, b2, a2) is bounded above and below for each i, the
lengths |Ii| and I ′i are comparable. Let

Âi = f−1Ai ∩ Ii , Â′i = f−1Bi ∩ I ′i
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so that for each i, (D̂, Â, Â′) is a conformal image of (D,A,B) and hence a conformal
(M,C)-rectangle. In particular, Â and Â′ are uniformly perfect and

diam Âi � |Ii| � |I ′i| � ˆdiamÂ′i.

The conformal maps of (D̂, Â, Â′) onto a rectangle that send the points a1, a2, b1, b2 to the
corners is quasisymmetric (this is clear since both domains are John with bounded constants,
and can be verified directly since it is just a composition of a Mobius transformation with a
logarithm). It remains to notice that the quasisymmetric homeomorphisms of (4.6) conjugates
to a quasisymmetric homeomorphism between Â′i and Âi+1. Thus the sets Âi, Â

′
i satisfy all

requirements of Theorem 1.2 and we have proved that Gehring trees satisfy the conditions of
Theorem 1.2.

5 Thick laminations admit welding

Our proof of Theorem 1.1 is based on a canonical solution to a finite welding problem which
we will describe first. Then in Section 5.2 we will approximate a given lamination by an
increasing sequence of finite ones and employ the modulus estimates of Section 3.2 to get
control of the regularity of their conformal solutions. The proof is finished in Section 5.3.

5.1 Finite laminations and balloon animals

Given a finite lamination L, there are many solutions to the realization problem of finding a
conformal map f of ∆ such that Lf = L. Koebe [Koe36] showed that laminations without
triple points can be realized as conformal laminations of circle domains (C \ f(∆) is a union
of discs with disjoint interiors), and also Lemma 19 in Bishops important work [Bis07] which
partly motivated our approach. There is nothing really special about discs, and it is feasible
that instead of discs one could prescribe any say strictly convex shape (up to homothety).
However, our method relies on the existence of a realization for which the harmonic measures
of complementary components are linearly related. The purpose of this section is to prove
the following proposition, see Figure 5.1.

Proposition 5.1. a) For every finite lamination L, there is a simply connected domain
G ⊂ C and a conformal map f : ∆→ G fixing ∞ such that C \G consists of Jordan domains
Gi, and such that f(x) = f(y) if and only if x = y or (x, y) ∈ L.

b) Moreover, G can be chosen such that there are points zi ∈ Gi for which the harmonic
measures ωi of ∂Gi at zi and ω∞ of G at ∞ have the property

dω∞
dωi

≡ pi on ∂Gi
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Figure 5.1: A finite lamination with seven pieces and two gaps, and its balloon animal G.

for all i, where pi = ω∞(∂Gi).

c) More generally, given positive numbers pi,j for each boundary arc αi,j of Pi such that∑
j pi,j = pi, then G and zi can be chosen such that

dω∞
dωi

≡ pi,j on βi,j = f(αi,j) for all i, j.

In b) and c), the domain G and the zi are unique up to normalization by a linear map
z 7→ az + b.

Remark. Boundedness of dω∞/dωi fails dramatically for circle domains, as the harmonic
measure of a disc is just normalized length measure, while the harmonic measure from the
outside at the intersection point of two discs decays exponentially. In fact, we will see that
the boundaries of the Gi are piecewise analytic arcs that make up equal angles at the contact
points.

The connected components of D \ L either have finite hyperbolic area, or meet the circle in
one or more non-degenerate intervals. The former are called gaps and correspond to points of
multiplicity at least three. The latter are in one-to-one correspondence with the Gi, We call
them the pieces of the lamination and label them Pi.

The balloon animal of L and its balloons are the domains G and Gi of Proposition 5.1, where
we normalize f hydrodynamically (f(z) = z +O(1/z) near ∞).

Proof of Proposition 5.1. The proof of b) and c) is essentially an exercise in conformal welding:
Take any smoothly bounded solution to a), form an abstract Riemann surface by gluing
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discs to ∂G according to the harmonic measure ω∞, and invoke the uniformization theorem.
Because there are singularities at the cut points, we will give a more detailed proof based
on the measurable Riemann mapping theorem: First, construct a domain H bounded by
C2−arcs realizing L and such that near each cut point, ∂H is a star in some local coordinate,
φ(∂H) = ∪2n

k=1[0, e
πi/k] : This can easily be done by starting with disjoint actual stars,

inductively joining their endpoints by sufficiently smooth curves (for instance hyperbolic
geodesics of the complementary domain), and finally correcting the harmonic measures at
∞ of the boundary arcs by an appropriate smooth quasiconformal map as described below.
Next, if h : ∆ → H is a conformal map fixing ∞ and if hi : D → Hi are conformal maps
to the bounded complementary components of H, define homeomorphisms φi : T → T by
setting

|φ′i(x)| = |(h−1 ◦ hi)′(x)|/pi,j for x ∈ αi,j
and normalizing by φi(1) = 1, say. Then the φi are smooth and admit quasiconformal
extensions Φi : D→ D. The Beltrami equation

∂F

∂F
(z) =

{
0 if z ∈ H,
∂
∂
Φi ◦ h−1

i if z ∈ Hi

has a quasiconformal solution F , and it is easy to check that G = F (H) satisfies the claim.

Example 5.2. If L consists of one chord only, say (−1, 1), thenG is the unbounded component
of the lemniscate {

√
z − 1 : |z| = 1} and f is the square root of a quadratic polynomial.

Call a finite lamination L well-branched if for each piece P , P ∩ T has one or two connected
components. In other words, L is well-branched if there is no balloon Gi for which ∂Gi

contains more than two cut points of G. The lamination of Figure 5.1 is well-branched. Since
we prefer to work with well-branched laminations, we observe that every finite lamination
has a well-branched refinement:

Lemma 5.3. If L′ is a finite sub-lamination of a maximal lamination L, then there is a
finite well-branched lamination L′′ with L′ ⊂ L′′ ⊂ L.

This can easily be proved by induction over the number of pieces with more than two cut
points: In every such piece, there is a gap subdividing the piece into smaller pieces with fewer
cutpoints.

We conclude this section with a simple criterion that guarantees existence of a solution to
the realization problem. Let Ln be an increasing sequence of finite laminations converging to
a lamination L ⊃ ∪nLn in the sense that for every chord (a, b) ∈ L there is a sequence of
chords (an, bn) ∈ Ln with an → a and bn → b. Denote Pn the set of pieces of Ln, and let fn
be a hydrodynamically normalized conformal map of ∆ realizing Ln (that is, fn(a) = fn(b)
for each (a, b) ∈ Ln). Denote

(5.1) mn = max
P∈Pn

sup
k≥n

diam fk(P ∩ T)
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the largest diameter amongst all images of pieces of generation n. Notice that, by our as-
sumption Ln ⊂ Ln+1, each of the sets fk(P ∩ T) is a finite union of balloons of generation k.

Proposition 5.4. If mn → 0 as n→∞, and if f is any subsequential limit of (fn)n≥1 under
compact convergence in ∆, then f extends continuously to ∆, convergence is uniform in ∆,
and f realizes L.

Proof. Each piece of Pn intersects ∂D in finitely many arcs. Denote sn the size of the smallest
such arc amongst all pieces of Pn. Notice that sn → 0 by Beurling’s projection theorem, since
fn are normalized and mn → 0. Then every interval I ⊂ ∂D of size ≤ sn is contained in at
most two such arcs, hence

diam fk(I) ≤ 2mn for all k ≥ n.

It follows that

|fk(z)− fk(w)| ≤ m′n for all k ≥ n, z, w ∈ ∆, |z − w| < sn

for a sequence m′n → 0. By pointwise convergence, this also holds for f , so that f is uniformly
continuous and extends to ∆. It also easily follows that the compact convergence is in fact
uniform. Finally, if (a, b) ∈ L and (an, bn) ∈ L converges to (a, b), then f(a) = lim fn(an) =
lim fn(bn) = f(b) so that f realizes L.

5.2 The Modulus estimate for finite approximations to L

We inductively construct a sequence Lk of finite approximations of L as follows. Set L0 = ∅
and fix k ≥ 1. For each dyadic point x = x`,k = `/2k ∈ T with 1 ≤ ` ≤ 2k for which r = 2−k is a
good scale, consider the sets and intervals Aj = Aj(x, k) ⊂ Ij = Ij(x, k), A′j ⊂ I ′j, 1 ≤ j ≤ n =
n(x, k) ≤ N and homeomorphisms φj of Theorem 1.1. Denote aj = aj(x, k) ∈ Aj, a′j ∈ A′j the
point of maximal distance from the point of intersection xj ∈ Ij ∩ I ′j. By the monotonicity of
φj we have (aj, a

′
j+1) ∈ L for each j. Next, since Aj is uniformly perfect and of size comparable

to Ij, it is easy to see that there is a point bj ∈ Aj ∩ [aj, xj] with |aj − bj| � |bj − xj| such
that [aj, bj] ∩ Aj is uniformly perfect, with constants only depending on the constant of L.
For each j, set b′j+1 = φ(bj) ∈ A′j ∩ [x, a′j] so that (bj, b

′
j+1) ∈ L, see Figure 5.2. By the

quasisymmetry of φj we have

|aj − bj| � |bj − xj| � |b′j − xj| � |a′j − b′j|,

and [a′j, b
′
j] ∩ A′j is uniformly perfect as well. Now form the set L̂k of all the chords (aj, a

′
j+1)

and (bj, b
′
j+1) , namely

L̂k =
2k⋃
`=1

n(x`,k)⋃
j=1

(aj, a
′
j+1) ∪ (bj, b

′
j+1).
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Figure 5.2: The definition of Lk and the annular neighborhood Ak(x).

Applying Lemma 5.3 to the finite sub-lamination L′ = Lk−1 ∪ L̂k of the maximal lamination
L, we obtain a well-branched lamination L′ ⊂ L′′ ⊂ L and set

Lk = L′′.

Denoting Dj = Dj,k(x) the hyperbolic convex hull (with respect to ∆) of [aj, bj] ∪ [a′j, b
′
j], we

set

(5.2) Ak(x) =

n(x,k)⋃
j=1

Dj,

see Figure 5.2.

We think of Ak(x) as an annular neighborhood of x at scale � 2−k, and leave the details of
the proof of the following Lemma to the reader.

Lemma 5.5. With

Aj,k = Aj ∩ [aj, bj] and A′j,k = A′j ∩ [b′1, a
′
1],

the (Dj,k, Aj,k, A
′
j,k) are conformal C−rectangles. Moreover,

Ak(x) ∩ Ak′(x′) = ∅

whenever |k − k′| ≥ C ′ and |x− x′| ≤ C ′2−k. Here C and C ′ only depend on the constant of
L.

We now turn to the key modulus estimate. Form the balloon animal Gm corresponding to
Lm. More precisely, apply Proposition 5.1 c) to Lm with

pi,j = 2ω∞(βi,j)
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Figure 5.3: Two consecutive balloon animals and annuli Am,k(x). Shaded are those Gi that
allow for a crossing from fm(Dj) to fm(Dj + 1).

so that

ω(zi, βi,1, Gi) = ω(zi, βi,2, Gi) =
1

2

for those i for which the balloon Gi has two boundary arcs (since Lm is well branched, each Gi

either has one or two boundary arcs). Denote fm : ∆→ C \ Gm the corresponding conformal
map. Let k ≤ m, let x = `/2k ∈ T be a dyadic point, and consider the image fm(Ak(x)).
The hyperbolic geodesics fm(< aj, a

′
j >), 1 ≤ j ≤ n are Jordan arcs whose union forms a

Jordan curve surrounding fm(x), and similarly for the union ∪jfm(< bj, b
′
j >). Together

these Jordan curves bound a topological annulus

Am,k(x) ⊃ fm(Ak(x)).

This annulus can also be obtained from fm(Ak(x)) by adding those Gi that correspond to the
chords of Lm with endpoints in

⋃
[aj, bj ]∪

⋃
[a′j, b

′
j ]. See Figure 5.3. Now Theorem 3.10 implies

Proposition 5.6. If r is a good scale for x, then the conformal modulus M(Am,k(x)) is
bounded away from zero, with bound depending only on the constant of L.

5.3 Proof of Theorem 1.1

We now have all ingredients to finish the proof of our main result Theorem 1.1.

Proof of Theorem 1.1. Given a maximal non-degenerate lamination L, form the approxima-
tions Lk described in the previous Section 5.2, together with their conformal realizations
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fk : ∆→ C \ Gk and annuli Am,k obtained from fm(Ak). Denote again Pn the set of pieces of
Ln. Then

mn = max
P∈Pn

sup
k≥n

diam fk(P ∩ T)

tends to zero exponentially fast: Indeed, by Lemma 5.5, every piece P ∈ Pn is surrounded by
n/C ′ disjoint “annular neighborhoods” of the form A`(x) (where x ∈ P ∩T and ` = jC ′, 1 ≤
j ≤ n/C ′), so that fk(P ∩ T) is surrounded by n/C ′ nested annuli Ak,`(x). By Proposition
5.6, all of these annuli have modulus ≥ M0, and the claim follows from Lemma 2.6. Let
f = limj→∞ fkj be an arbitrary subsequential limit. By Proposition 5.4, f has a continuous

extension to ∆ and realizes L, namely L = Lf .

Notice that the exponential decay of the diameters of the balloons implies the Hölder
continuity of f. The stronger John property of G = f(∆) follows from the same modulus
estimate, applied to the characterization Theorem 2.4: Indeed, if A ⊂ I ⊂ T are arcs of
length |A| ≤ β|I|, then there is a point x = `/2m ∈ A and a scale 2m ∼ |A| such that the
annular neighborhood Am(x) surrounds A. By Lemma 5.5, there are disjoint nested annular
neighborhoods Am−jC′(xj). If β . 2−nC

′
, the interval I crosses all Am−jC′(x), 1 ≤ j ≤ n.

Consequently, for every k, fk(I) crosses the annuli Ak,m−jC′(xj). Since fk(A) is surrounded
by these annuli, by Lemmas 2.6 and 2.7 we have that

log(1 +
diam f(I)

diam f(A)
) ≥ nM0 − c

and we obtain diam f(A) ≤ 1/2 diam f(I) if β is sufficiently small.

6 Proof strategy for Theorem 1.3

Fix a standard Brownian excursion e : [0, 1]→ R+. We would like to employ Theorem 1.1
and show that almost surely for every x ∈ T and every n ≥ 1 there are n/2 nested annuli
centered at x of scale ≥ 2−n that satisfy the Conditions 1-3 of Section 3.2. By rotation
invariance of the CRT, it suffices to consider x = 0 and show that the probability of not
having n/2 good scales decays faster than 2−n.

6.1 Decomposition of Brownian excursion

The annuli will be obtained from a decomposition of e into excursions away from Hj that
reach height Hj+1, where essentially Hj = λj−n for some fixed λ > 1 and 1 ≤ j ≤ n. For
ease of notation, we fix j and write h1 = Hj, h2 = Hj+1 and so on in our description of the
decomposition below, see Figure 6.1.
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Figure 6.1: The decomposition of a Brownian excursion with respect to heights h1 and h2.
Here, there are k = 2 excursions from height h1 to height h2, over the intervals U1 and U2.
The lengths of the intervals in this decomposition are given by the ai. The indexing is always
chosen so that a1 and a2 are the lengths of the intervals on the end, then a3, . . . , ak+1 are the
lengths of the intervals in between the excursion intervals, and finally ak+2, . . . , a2k+1 are the
lengths of the excursion intervals themselves.

Let X = {t : e(t) = h1}. Consider those connected components U of [0, 1]\X on which e

is an excursion that reaches level h2, e|U ≥ h1 and sup e|U ≥ h2. Suppose there are k such
components U1, ..., Uk (by continuity there are finitely many of these intervals). Then there
are k + 1 components Uk+1, ..., U2k+1 of the complement [0, 1] \

⋃
j Uj. Notice that

• Conditioned on the leftmost interval, the law of e on that interval is that of a Brownian
meander conditioned on ending at h1 and staying below h2. Similarly, the conditional
law of e on the rightmost interval is that of a time-reversal of such a meander.

• On the Uj with 1 ≤ j ≤ k, the (conditional) law of e− h1 is that of an excursion that
reaches height h2 − h1.

• On the remaining Uj, the (conditional) law of e is that of a Brownian bridge from h1

to h1, conditioned to stay between 0 and h2.

If k ≥ 1, the lengths of the intervals Uj can be viewed as a (2k + 1)− dimensional vector
a = (a1, . . . , a2k+1). Re-label the indices so that

• a1 and a2 denote the lengths of the left- and rightmost interval.

• a3, . . . , ak+1 denotes the lengths of the k − 1 bridges, in left to right order.

• ak+2, . . . , a2k+1 denotes the lengths of the k excursions, in left to right order.

Thus for example ak+2 = |U1|. It is not hard to write down an explicit expression for the
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density of the random variable a, see Proposition 7.2 below for the analog in the discrete
setting.

Here are some intuitive statements about a. By Brownian scaling we may assume h1 = 1
and h2 = λh1 for some fixed λ > 0. Let W > 0 be the length of the excursion after this
rescaling.

• If W is very small, then k = 0 with high probability.

• k has exponential tails, uniformly as W →∞.

• It is very unlikely for a Brownian bridge to stay in an interval of size h1 over a time
period much longer than h2

1. It follows that it is very unlikely for the lengths a3, . . . , ak+1

to be much longer than h2
1.

• For W/h2
1 � 1, it is likely that most of the mass of the interval [0,W ] goes to a single

ai: For example, it is much more likely that there is an ai with ai ≈ Wi than it is to
have ai and aj with ai ≈ aj ≈ W/2.

6.2 Constructing chains for the Brownian excursion

We now explain how the decomposition defined in the previous section can be used to
construct chains of large modulus (see Section 3.2 for definitions).

Fix N large and for l = 0, 1, 2, . . . consider the geometric sequence of scales H0 = 0 and

Hl+1 = Hl + λ−Nλl

so that
Hl+2 −Hl+1 = λ(Hl+1 −Hl).

Let e : [0, 1]→ [0,∞) be an excursion.

Fix a “scale” h0 = Hl, h1 = Hl+1, h2 = Hl+2 and denote Hl+.5 = h1.5 the point in between h1

and h2 satisfying
h2 − h1.5

h1.5 − h1

= Λ

where Λ is a large parameter that is determined later. Fix an excursion interval Uj ⊂ T,
1 ≤ j ≤ k, so that by our definition inf e|Uj = h1 and sup e|Uj ≥ h2. Let τ = τj = inf{t ∈
Uj : e|Uj(t) = h2} and τ̃ = sup{t ∈ Uj : e|Uj(t) = h2} be the first and last times respectively
that e|Uj visits h2. Let τ− = sup{t ∈ Uj : t < τ, e(t) = h1.5} be the last time that e|Uj visits
h1.5 before visiting h2. Let τ+ = inf{t ∈ Uj : t > τ̃ , e(t) = h1.5} be the first time that e|Uj
visits h1.5 after visiting h2 for the last time, see Figure 7.1 below.
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The endpoints of Uj, θ
− and θ+, are equivalent, so if τ− and τ+ are equivalent, the pair of

intervals C(l,j) := ([θ−, τ−], [τ+, θ+]) form a chain link (Definition 3.8). Define the chain C(l)

as the sequence of chain links C(l,j) for j = 1, . . . , k, see Figure 6.2.

The following conditions Good1,Good2, ...,Good5 guarantee the desired lower bound on
M(Γ(C(l))). They all involve the parameter L > 0, where larger L corresponds to less
restrictive conditions. See Section 7.3 for the detailed definitions on these conditions in the
discrete setting.

We say that S|Uj ∈ good1(h1, h2) if the restriction of the jth excursion to [τ−, τ+] does not
dip below height h1.5, so that τ− and τ+ are identified via ∼ (Figure 6.2), and we say that
S ∈ Good1(h1, h2) if S|Uj ∈ good1(h1, h2)holds for all 1 ≤ j ≤ kl.

If Good1 holds then by the discussion above, we get a well defined chain link C(l). The
remaining conditions Good2,3,4,5 ensure that this chain link satisfies the conditions of Theorem
3.9. We say that S|Uj ∈ good2(h1, h2) if the diameters of the two intervals in the chain link

C(l,j) are comparable to h−2
1 , and we say that S ∈ Good2 if S|Uj ∈ Good1(h1, h2) for all

j = 1, . . . , k.

We say that S|Uj ∈ good3(h1, h2) if the excursion is Hölder on the chain link intervals of

C(j). This yields the regularity of ∼ on the corresponding pair of chain link intervals via
Lemma 3.5. We say that S ∈ Good3(h1, h2) if S|Uj ∈ good3(h1, h2) for all j = 1, . . . , k. The
Good4−condition is satisfied if the total length of the non-excursion intervals is comparable to
h−2

1 . The Good5−condition means that the degree k = kl of the chain from this construction
is bounded.

Figure 6.2: Left: we have a Brownian excursion which has k = 3 excursions from h1 = λlh
to h2 = λl+1h. The rest of the excursion is irrelevant and not shown here. The conditions
Good1(l, j) are satisfied for j = 1, 2, 3, and the resulting chain links are highlighted on the
x-axis.

By Theorem 3.9 (more precisely, by discrete approximation of the lamination as in Section
5.2 together with Theorem 3.10), every scale that satisfies the Good conditions gives rise to
a good scale in Theorem 1.1. Thus the proof of Theorem 1.3 reduces to showing that the
Good conditions hold at many scales l. If the scales were independent, it would suffice to
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estimate the probability that a given scale satisfies the Good conditions. Since the scales
are not independent, we have to work a little harder. We analyze them via a discrete time
Markov exploration process ωl, where ωl consists of the following information:

• The excursion intervals Uj of e from Hl to Hl+1 (described in Section 6.1).

• The excursion intervals Vi from Hl+1 to Hl+2

• The restriction of e to the Uj, modulo the restriction onto the Vi. In other words, we
keep track of what happens on the Uj , but we ‘forget’ what happens on the Vi intervals.

See https://sites.math.washington.edu/~peterlin/excursion-exploration for a in-
teractive demonstration of this exploration.

If e is distributed as a Brownian excursion, then it easy to see that (l, ωl)l≥0 is a Markov
chain. Some aspects of this Markov chain can be computed explicitly. For example, let a(ωl)
denote the sequence of lengths of the excursion intervals Vi above. This is also a Markov
chain and its transition probabilities can be computed explicitly. See the next section for the
details in the discrete setting.

Each of the Goodi conditions can be identified with a certain subset of the state space of this
Markov chain, and the following large deviation estimate (proved in Appendix A) can be
applied.

Theorem 6.1. Let ωl be a Markov chain on state space Ω with transition densities π(x, dy).
Let A ⊂ Ω and suppose u : Ω→ [1,∞) is a function with

λu(x) = log

(
u(x)∫

u(y)π(x, dy)

)
≥ 0,

Then for each ε > 0,

(6.1) P
(

1

n

∣∣{k : ωk ∈ A}
∣∣ ≥ ε

)
≤ Eu(ω1) exp

(
−nε inf

ω∈A
λu(ω)

)
.

It remains to construct a test function u such that (6.1) is satisfied and such that infω/∈Good λu(ω)
is large. For the sake of exposition, we first describe how to create a test function that gives
us a bound for the Good5 condition.

In our exploration process, each excursion interval splits into multiple excursion intervals,
independently of the other excursion intervals. Generically, there will be one large excursion
interval which is sustained from level to level, and occasionally this excursion interval will
have a few child intervals of short length. These shorter excursion intervals will tend to
not have too many children (see Proposition 7.6), and so it is plausible that at most levels,
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the Good5 condition is satisfied. To understand the choice of test function, it is helpful to
use subcritical Galton-Watson branching with immigration as a simplified toy model of the
process. Let Z0, Z1, Z2, . . . where Z0 = 0 and

Zn+1 = 1 +
Zn∑
i=1

Ξi,

and the Ξi are i.i.d. random variables of mean strictly less than 1, supported on the
nonnegative integers. The immigrant plays the role of the large excursion interval. In this
case, the test function u(Zn) := ζZn for some appropriately chosen constant ζ > 1 can be
used in Theorem 6.1 to get large deviations upper bounds on the density of generations for
which Zn is large. Indeed, the fact that each node has its children independently allows
the exponent in the right hand side of (6.1) to be bounded. The same technique works for
subcritical multitype Galton-Watson processes, where now the test function has to take into
account the different types: u(Zn) =

∏Zn
i=1 ζType(i) where ζ is now a real valued function of

types. For the exploration process of excursion intervals, the ‘type’ of the excursion interval
is the (scaled) length β > 0 of the excursion interval, and it turns out (c.f. Lemma 7.9) that
ζ(β) = 2 + β1/4 works.

That is, if λ > 1 is sufficiently large, then it can be shown that the following test function u = V
satisfies the hypotheses of Theorem 6.1 whenA = {ω : ω has more than L excursion intervals}
is the complement of the Good5 states.

V (ω, l) =
2k+1∏
i=k+2

(2 + (aig
−2
l )1/4),

where gl = Hl+2 −Hl+1 and the ai are the lengths of the excursion intervals from Hl+1 to
Hl+2.

Now we write down the more complicated test function that we will actually use, to get
large deviations for all the Good1,2,3,4,5 conditions. Calculation shows that for suitable
parameters q, λ > 1 large, and s > 1, W0 > 0 small, the following function has the desired
properties:

V (ω, l) = sg
−2
l −

∑kl
i=1 αi

kl∏
i=1

q1(αi≤W0)(2 + α
1/4
i )1/2

kl−1∏
j=1

q1(S|Uj /∈good1,2,3(Hl,Hl+1).(6.2)

where for i = 1, . . . , k, the αi = a(ωl)i+k+1g
−2
l are the scaled lengths of the excursions intervals

from Hl+1 to Hl+2.

This definition depends on several different constants, some of which have already been
introduced. We summarize them here for the reader’s convenience. All these constants except
for s and W0 will be taken to be ‘large’.
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1. q > 1 is a penalty factor for violating the good1,2,3 condition and also a penalty for any
excursion intervals that are too short. It will turn out that we need to take q � λ20.

2. L > 1 is a parameter that determines how restrictive the Good1,2,3,4,5 conditions are.

3. W0 > 0 is a parameter that determines what constitutes a ‘short’ excursion interval. We
need to penalize short excursion intervals so that we can ensure the good1,2,3 conditions
are satisfied (see the hypotheses of Proposition 7.7).

4. s > 1 is a penalty factor for violating the Good4 condition.

5. λ ≥ 2 is the step size for the Markov exploration process.

6. Λ ≥ 2 determines the relative distances between Hl, Hl+0.5, and Hl+1. Changing this
parameter affects the definition of the good1,2,3 conditions.

In (6.2), the factor sg
−2
l −

∑kl
i=1 αi penalizes states for which much of the interval [0, 1] is taken

up by non-excursion-intervals. Whenever the Good4 condition is violated, this factor is large.
However, this tends to decrease under iteration of the Markov chain due to the extra factor
of λ−2 from rescaling.

Using the explicit equations for the transition probabilities of the Markov chain, it can be
shown that the test function (6.2) has the desired properties. We will not present the proof
here. Instead, we will prove the analogous result (Lemma 7.8) for the discrete approximations
to the Brownian excursion.

7 Proof of Theorem 1.4

In this section we present the details of the proof the proof of Theorem 1.4, following the
strategy of the proof of Theorem 1.3 outlined in the previous section. As Theorem 1.4
implies Theorem 1.3, this also concludes a detailed proof of Theorem 1.3. Before adopting
the decomposition described in Section 6.1 to the setting of random walks, we collect some
notation and terminology.

7.1 Notation and terminology

A (Bernoulli) walk of length n is a map S : {0, . . . , n} → Z such that Si+1 − Si ∈ {−1, 1}
for i ≥ 1. For the rest of this paper we will assume that Bernoulli walks are defined on the
whole interval [0, n] by requiring that the walk is linear of slope 1 in between the integer
points.
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For a ∈ Z denote Wn(a) denote the collection of walks of length n with S0 = a. Let
Wn(a→ b) ⊂Wn(a) denote the set of walks S with Sn = b, so that |Wn(a)| = 2n and

(7.1) |Wn(a→ b)| =
(

n

n/2− (b− a)/2

)
.

For this formula to be true when n is odd, we abide by the convention that binomial coefficients
with noninteger arguments are equal to zero.

Let En(a) ⊂Wn(a→ a) denote the collection of excursions away from a of length n, namely
walks with S0 = Sn = a, and Si ≥ a for all i. Note that En(0) is the collection of Dyck paths
of length n, and recall that |En(0)| is given by the Catalan number 1

n/2+1

(
n
n/2

)
(this can be

deduced by taking a = n+ 1 and g = 1 in Corollary B.2).

Fix an excursion an excursion S from 0. As in the previous section, we will consider the
excursions of S away from h1 that exceed level h2, where 0 = h0 < h1 < h2. As before, this
naturally leads us to consider the partition of [0, n] into disjoint (except for their endpoints)
closed intervals, where the restriction of S onto each part corresponds to one of the following
three types:

• For n ≥ 2, let W↑
n(a → b) ⊂ Wn(a → b) denote the walks which ‘approach a and b

from below’, that is

W↑
n(a→ b) = {S ∈Wn(a→ b) : S1 = a− 1 and Sn−1 = b− 1}.

This definition is needed to guarantee uniqueness of the decomposition, Proposition 7.2.

Note the natural bijection W↑
n(a→ b) ∼= Wn−2(a−1→ b−1) which together with (7.1)

yields |W↑
n(a → b)| =

(
n−2

n/2−1−(b−a)/2

)
. For c < d, let W↑

n(a → b; c ≤ min < max ≤ d)

be the set of walks S in W↑
n(a→ b) for which c ≤ S ≤ d.

• Let Zn(a ↑ b) ⊂Wn(a→ b) denote the walks that stay above the left endpoint a and
‘approach the right from below’, that is

Zn(a ↑ b) = {S ∈Wn(a→ b) : S ≥ a and Sn−1 = b− 1}.

Similarly, let Zn(a ↓ b) ⊂ Wn(a → b) denote the walks that stay above the right
endpoint and ‘approach the left from below’, that is

Zn(a ↓ b) = {S ∈Wn(a→ b) : S ≥ b and S1 = a− 1}.

Notice that there is a natural bijection Zn(a ↑ b) ∼= Zn(b ↓ a) by time reversal. Corollary
B.2 shows that |Zw(a ↑ b)| = b−a

w

(
w

w
2

+ b−a
2

)
.

• For b > a, let En(a; max ≥ b) be the collection of excursions in En(a) with maximum
greater than or equal to b.
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We will often need to consider the uniform probability measure on these spaces of walks. We
will use a subscript to denote the probability measure in question, and the variable S to denote
the random variable; for instance PWn(a→b)(S ∈ ·) denotes the uniform probability distribution

on Wn(a→ b). Thus for A ⊂Wn(a→ b) we have PWn(a→b)(S ∈ A) = |A|
|Wn(a→b)| .

In what follows, we will frequently deal with walks and excursions that are defined on intervals
I = [u, v] instead of on [0, n]. Therefore it will be convenient to use the notation WI ,EI , and
so on, with the obvious meaning. If there is no subscript, the union over all intervals (with
integer endpoints) is taken. For example, W(a) =

⋃
I WI(a).

7.2 Excursion decomposition of Dyck paths

Fix integers h2 > h1 > h0 = 0 and suppose S ∈ En(0,max ≥ h2) is an excursion that reaches
level h2. Let k = k(S) ≥ 1 be the number of excursions away from h1 that reach level h2.
Then we can decompose S into a concatenation of walks

S = Z1E1B1E2B2 · · ·Bk−1EkZ2

where

• Z1 ∈ Z(0 ↑ h1,max < h2) and Z2 ∈ Z(h1 ↓ 0,max < h2)

• For i = 1, . . . , k − 1, Bi ∈W↑(h1 → h1, 0 ≤ min < max < h2).

• For i = 1, . . . , k, Ei ∈ E(h1,max ≥ h2).

Definition 7.1. We will refer to the walks in the decomposition as [0 ↑ h1 ↑ h2]-ends, [0 ↑ h1 ↑
h2]-bridges and [0 ↑ h1 ↑ h2]-excursions (which we often abbreviate as [h1 ↑ h2]-excursions),
respectively, of S. We will also call the intervals in this decomposition the [0 ↑ h1 ↑ h2]-end
intervals of S and so on. We denote a(S) = a[0↑h1↑h2](S) = (a1, . . . , a2k+1) ∈ Z2k+1

≥0 the vector
of lengths of the intervals in this decomposition, and will always choose the indexing of the
ai as in Section 6.1:

• a1 and a2 are the lengths of the [0 ↑ h1 ↑ h2]-end intervals.

• a3, . . . , ak+1 are the lengths of the [0 ↑ h1 ↑ h2]-bridge intervals, in left to right order.

• ak+2, . . . , a2k+1 are the lengths of the [0 ↑ h1 ↑ h2]-excursion intervals, in left to right
order.

Similarly, we define the [H1 ↑ H2 ↑ H3]-decomposition of a walk S by translation as the
[0 ↑ H2 −H1 ↑ H3 −H1]-decomposition of S −H1, and we often abbreviate [H1 ↑ H2 ↑ H3]-
excursion intervals to [H2 ↑ H3]-excursion intervals.
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The indexing of the ai above is consistent with the notation in the following simple conse-
quence of the uniqueness of the above decomposition:

Proposition 7.2. Fix integers h2 > h1 > a and n ≥ 2. There is a bijection

(7.2) En(0) ∼= En(0,max < h2)t

t
∞⊔
k=1

⊔
a1+···+a2k+1=n

Za1(0 ↑ h1,max < h2)× Za2(h1 ↓ 0,max < h2)×

×
k+1∏
i=3

W↑
ai

(h1 → h1, 0 ≤ min < max < h2)×
2k+1∏
i=k+2

Eai(h1,max ≥ h2),

where the second disjoint union is taken over positive integers ai ≥ 0.

7.3 Chains and conditions for large modulus

In this section we show how the decomposition introduced in the previous Section 7.2 naturally
leads to annuli. We then identify several conditions that the decomposition at a given level
must satisfy for the corresponding annulus to have good modulus. In the subsequent sections
we will show that these conditions are satisfied at many scales.

Fix 0 < h1 < h2 integer. Let S ∈ En(0,max ≥ h2) be an excursion that reaches height h2.
Let U1, . . . , Uk be the [0 ↑ h1 ↑ h2]-excursion intervals of S so that all S|Uj ∈ E(h1,max ≥
h2).

We now describe these various conditions as subsets of E(h1), denoted by Goodi(h1, h2) where
1 ≤ i ≤ 5. They involve a parameter L > 1 where larger choices of L make the conditions
less restrictive. In what follows, let Λ > 1 be an integer and let

h1.5 = h1 + b(h2 − h1)/Λc.

The first three conditions are regularity conditions that each of the [h1 ↑ h2]-excursions
have to satisfy individually, S ∈ Good1,2,3(h1, h2) if and only if for all j, S|Uj − h1 ∈
good1,2,3(h1.5 − h1, h2 − h1).

The good1,2,3(g′, g) condition on excursions T from 0 that exceed g are defined below in terms
of their [0 ↑ g′ ↑ g]-decomposition.

The first condition T ∈ good1(g
′, g) is that T has only one [g′ ↑ g]-excursion. That is, T

only makes a single excursion away from g′ that reaches g. If this condition holds then we

47



define a chain link (recall Definition 3.8) as the pair of left and right [g′ ↑ g]-end intervals
J−j = [l−, r−] and J+

j = [l+, r+] of T . Notice that S|Uj −h1 ∈ good1(h1.5−h1, h2−h1) implies
r− ∼ l+, while l− ∼ r+ always holds. See Figure 7.1.

Figure 7.1: Definition of the good1(h1.5−h1, h2−h1) condition. We have drawn the excursion
S over its j−th excursion interval Uj. τ and τ̃ are the first and last hitting times in Uj of
height h2. τ− is the last hitting time of g′ in Uj before hitting h2, and τ+ is the first hitting
time of g′ after τ̃ . We say that good1(h1.5 − h1, h2 − h1) holds for S|Uj − h1 if the portion of
the excursion between τ and τ̃ does not dip below height h1.5, so that τ− and τ+ are identified
via ∼. If this holds, then the pair ([θ−, τ−], [τ+, θ+]) is a chain link as defined in Section 3.2.

If S ∈ Good1(h1, h2), then the corresponding collection of chain links {(J−j , J+
j )}ki=1 forms a

chain of degree k around 0. We call this the (h1, h2)-chain associated to S.

Next, we say that T ∈ good2(g′, g) if aig
′−2 ∈ [L−1, L] for i = 1, 2, where a1, a2 are the lengths

of the [0 ↑ g′ ↑ g]-end intervals of T . This condition controls the diameters of the chain link
associated to T .

We say that T ∈ good3(g′, g) if eZ1 and eZ2 are (L, 1/3)-Hölder continuous on [0, 1]. Here

(7.3) eZi(t) := a
−1/2
i Zi(ait)

are the Brownian rescalings of the [0 ↑ g′ ↑ g]-end intervals of T . This condition gives control
over the regularity of the welding on the chain link associated to T .

The remaining conditions depends on all the excursion intervals (S|Uj)kj=1 at a given scale,
simultaneously.

We say that Good4(h1, h2) holds for S if n − w1 − · · · − wk ≤ Lh2
1, where w1, . . . , wk are

the lengths of the [h1 ↑ h2]-excursion intervals, and Good5(h1, h2) holds if the number k of
[h1 ↑ h2]-excursion intervals of S is less than L. Finally we say that Good5̃(h1, h2) holds if
Good5(h1, h2) holds and there is at least one [h1 ↑ h2]-excursion interval.
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This gives a bound on the degree on the (h1, h2)-chain and the sum (and hence maximum) of
the gaps between the chain links.

Definition 7.3. Fix L,Λ > 1 and 0 < h1 < h2 integer, with h2 − h1 ≥ Λ. Let S be an
excursion in En(0) and let Uj be the [0 ↑ h1 ↑ h2]-excursion intervals of S. We say that S
belongs to Good(h1, h2) if S|Uj ∈ Goodi(h1, h2) for each 1 ≤ j ≤ k and 1 ≤ i ≤ 3, and if
Good4(h1, h2) and Good5̃(h1, h2) holds.

Proposition 7.4. Suppose h2 ≥ 2h1. If an excursion S belongs to Good(h1, h2), then the
curve family Γ(C) of the (h1, h2)-chain C associated to S satisfies

M (Γ(C)) ≥ δ0

where δ0 > 0 depends only on L and Λ.

Proof. We would like to apply Theorem 3.9 and need to verify Conditions 1-3.

First, Good2 implies |J+
j | �L2 |J−j+1| and Good4 implies |l−j+1 − r+

j | .L,Λ |J+
j | so that (3.6)

and therefore Condition 1 holds.

Second, Condition 2 follows from Good3 and (the proof of) Lemma 3.5.

And third, the existence of the chain itself and the boundedness of the degree, Condition 3,
is the same as Good5̃.

7.4 The main estimate and setup: Positive density of good scales

We now formulate the main estimate for the probability that a fixed percentage of scales are
good. Fix λ,Λ ≥ 2 integer and and consider the sequence of scales H0 = 0 and Hl+1 = Hl+λl.
Let Hl+0.5 = Hl + bHl+1−Hl

Λ
c, for sufficiently large l this will be strictly between Hl and

Hl+1.

Consider an excursion S of length n, fix 0 < r < 1 small and consider the ball of radius
r centered at the root in the tree metric d = dgraph/n

1/2. We wish to show that it can be
separated from a circle of fixed radius by & log 1

r
annuli of modulus & 1 with probability

1 − O(rT0), where any T0 > 2 suffices for our purpose. More precisely, define ρ such that
Hρ−1 < r

√
n ≤ Hρ and define N ≥ ρ such that HN−1 < r1/2

√
n ≤ HN . Notice that

1

2
logλ

1

r
− 2 ≤ N − ρ < 1

2
logλ

1

r
+ 2.(7.4)

Then many of the associated (Hl, Hl+1)-chains satisfy the Good conditions and therefore the
assumption of Proposition 7.4 :
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Proposition 7.5. There are integers λ,Λ, L > 1 and r0 > 0 such that for all n for which
r ≤ r0, we have

P
( |{l = ρ, . . . , N : S ∈ Good1,2,3,4,5̃(Hl, Hl+1)}|+ 1

N − ρ
<

1

2

)
≤ Cλr

2.25,

where S is a uniformly random excursion in En(0) and the constant Cλ only depends on λ.

Proposition 7.5 follows from a large deviations estimate applied to a Markov chain ωl and
a suitable test function V that we will define in the next section. In the remainder of this
section, we prove that each individual [Hl ↑ Hl+1]−excursion satisfies the good1,2,3 conditions
with probability arbitrarily close to 1 if the parameters are chosen appropriately. We begin
with a geometric upper bound on the number of large excursions inside a given excursion. It
immediately implies that, at a fixed scale, the Good5 condition holds with high probability,
and later also provides us with control over the Markov chain exploration.

Lemma 7.6. Let g > 1 and λ > 1 be integers. Let S be a uniformly random excursion
of type Ew(0,max ≥ g). Let k be the number of [g ↑ λg]-excursions of S. There exists
pλ,wg−2 , p̃λ,wg−2 < 1 such that

P(k ≥ m) ≤ p̃m−1
λ pλ,wg−2

for m ≥ 1. Moreover, we can choose pλ,wg−2 and p̃λ in such a way that

1. pλ,wg−2 . exp
(
−c0

(λ−1)2g2

w

)
2. p̃λ,wg−2 . exp

(
−c0

(λ−1)2g2

w

)
3. p̃λ,wg−2 → 0 uniformly in wg−2 as λ→∞.

Here c0 is a universal constant and the first two statements are primarily useful when wg−2

is bounded.

Proof. Let τ− and τ+ be the first and last times respectively that S is at level g. Conditioned
on τ−, τ+, the walk S|[τ−,τ+] is, up to translation of the domain, a uniform walk of type
WT (g → g,min ≥ 0), where T = τ+ − τ−. We have k ≥ 1 if and only if this latter walk
reaches level λg. By Lemma B.7, this probability is bounded by a quantity pλ,wg−2 which has
the desired properties.

This proves the statement of the lemma for m = 1. For the general case, it suffices to prove
the bound P(k ≥ m+ 1|k ≥ m) ≤ p̃λ for m ≥ 1 and use induction. Suppose S is conditioned
on k ≥ m. Let U ⊂ [0, T ] be the mth excursion interval, and let τ− be the first time that S
hits λg in U . Let τ+ be the last time in [0, T ] that S hits λg. Conditioned on τ−, τ+, the walk
S|τ−,τ+ is (up to translation of the domain) a uniform walk of type WT (λg → λg,min ≥ 0)
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where T = τ+ − τ−. We have k ≥ m + 1 if and only if this latter walk hits level g. Thus
item 2) follows from Lemma B.7, and item 3) follows from Lemma B.6.

Now we are ready to estimate the probability of the good1,2,3− conditions of a single excursion
at a fixed level. Let g, L,Λ > 0 be integers and let g′ = bg/Λc.

Proposition 7.7. For any W0 > 0, ε > 0, there exists Λ0 > 0 such that the probability
that a uniformly random excursion from 0 of length w > W0g

2 satisfies the good conditions
good1,2,3(g′, g) is bounded below by 1− ε when Λ ≥ Λ0 and L ≥ L0(Λ).

Proof. Fix ε > 0 and note that Lemma 7.6 implies P(S /∈ Good1(g
′, g)) ≤ ε for sufficiently

large Λ. Next, recall the condition Good2(g
′, g), which says that aig

′−2 ∈ [L−1, L], where
a1, a2 are the lengths of the [g′ ↑ g]-end intervals respectively. First we bound the probability
p that a1g

′−2 /∈ [L−1, L]. Notice that if S ∈ Ew(0,max ≥ g), the part of S after its first
[g′ ↑ g]-end interval may be decomposed uniquely into the concatenation of a walk of type
E(g′,max ≥ g) and a walk of type Z(g′ ↓ 0). So, by Corollary B.2 and Proposition B.5,

p =
1

Ew(0,max ≥ g)

∑
a1+b+c=w

a1g′−2 /∈[L−1,L]

|Za1(0 ↑ g′,max < g)| · |Eb(g
′,max ≥ g)| · |Zc(g

′ ↓ 0)|

≤ 1

Cstirw−3/2cW0

∑
a1+b+c=w

a1g′−2 /∈[L−1,L]

|Za1(0 ↑ g′,max < g)|2−a1

· |Eb(0,max ≥ (Λ− 1)g′)|2−b · |Zc(g
′ ↓ 0)|2−c.

Using the estimates from Proposition B.5, Lemma B.9, and Corollary B.2, we get

p .W0 w
3/2

∑
a1+b+c=w

a1g′−2 /∈[L−1,L]

g′a
−3/2
1 e

− g′2
3a1 e

−c0 a1
g2 · b−3/2e−c0

(Λ−1)2g′2
b · g′c−3/2e−

g′2
3c

for some universal constant c0. Now if a1 + b+ c = w then either a1 ≥ w/3, or b ≥ w/3, or
c ≥ w/3, so the sum above can be bounded by splitting the region of summation over those
three regions: we have

p . w3/2(Ia + Ib + Ic)(7.5)
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where, for fixed ε > 0 and sufficiently large L,

Ia =
∑

a1+b+c=w
a1g′−2 /∈[L−1,L]

a1≥w/3

g′a
−3/2
1 e

− g′2
3a1 e

−c0 a1
g2 · b−3/2e−c0

(Λ−1)2g′2
b · g′c−3/2e−

g′2
3c

≤ sup
a1≥w/3

a1g′−2 /∈[L−1,L]

a
−3/2
1 e

− g′2
3a1 e

−c0 a1
g2

∑
a1+b+c=w

a1g′−2 /∈[L−1,L]
a1≥w/3

g′ · b−3/2e−c0
(Λ−1)2g′2

b · g′c−3/2e−
g′2
3c

≤ (w/3)−3/2ε
∑
b,c≤w

g′ · b−3/2e−c0
(Λ−1)2g′2

b · g′c−3/2e−
g′2
3c

≤ (w/3)−3/2ε ·
∫ ∞

1

x−3/2e−c0
(Λ−1)2

x dx ·
∫ ∞

1

x−3/2e−
1
3xdx

≤ (w/3)−3/2 · ε · C0.

Similarly, for fixed ε > 0 and fixed Λ > 1, and sufficiently large L ,

Ib =
∑

a1+b+c=w
a1g′−2 /∈[L−1,L]

b≥w/3

g′a
−3/2
1 e

− g′2
3a1 e

−c0 a1
g2 · b−3/2e−c0

(Λ−1)2g′2
b · g′c−3/2e−

g′2
3c

≤ sup
b≥w/3

b−3/2e−c0
(Λ−1)2g′2

b

∑
a1,c≤w

a1g′−2 /∈[L−1,L]

g′a
−3/2
1 e

− g′2
3a1 e

−c0 a1
g2 · g′c−3/2e−

g′2
3c

≤ (w/3)−3/2 ·
∫

[1,∞)\[L−1,L]

x−3/2e−
1
2x e
−c0x· g

′2

g2 dx ·
∫ ∞

1

x−3/2e−
1
2xdx

≤ (w/3)−3/2 ·
∫

[1,∞)\[L−1,L]

x−3/2e−
1
2x e−c0x·

1
2Λdx ·

∫ ∞
1

x−3/2e−
1
2xdx

≤ (w/3)−3/2 · ε · C0.

A similar argument gives Ic ≤ (w/3)−3/2 · ε ·C0. Using these estimates in (7.5) gives, for fixed
ε > 0 and fixed Λ > 1, and sufficiently large L, p ≤ ε. By the union bound, the probability
that Good2(g′, g) does not hold is bounded by 2p ≤ 2ε.

Finally, we have from Lemma B.4 that P(S ∈ Good3|S ∈ Good2) ≥ 1− ε for sufficiently large
L. Hence P(S ∈ Good2 ∩Good3) ≥ (1− Cε) · (1− ε). By the union bound, we get (for fixed
ε, for sufficiently large Λ and L),

P(S ∈ Bad) ≤ P(S /∈ Good1) + P(S /∈ Good2 ∩Good3) . ε

and the proposition follows.
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7.5 The Markov chain exploration

The key observation is that a uniformly random S ∈ En(0) may be explored via a Markov
chain on a state space Ω consisting of finite tuples of quotient excursions. These are
equivalence classes of walks defined via the following equivalence relation on excursions
Ew(Hl,max ≥ Hl+1) : Declare two such excursions S, S ′ equivalent if they have the same
[Hl+1 ↑ Hl+2]-excursion intervals and they are equal on the complement of these excursion
intervals. In particular, if S, S ′ do not reach height Hl+2 then they are equivalent if and only
if they are equal. Denote the equivalence class of S by [S].

Recall the excursion decomposition of Section 7.2 and in particular Definition 7.1. Equivalence
classes have well defined [Hl ↑ Hl+1 ↑ Hl+2]-ends and -bridges, and well defined [Hl+1 ↑ Hl+2]-
excursion intervals. In particular, the conditions Good1,2,3(Hl, Hl+1) are well defined on
quotient excursions.

If S ∈ En(0) and if U1, . . . , Uk are the [Hl ↑ Hl+1]-excursion-intervals of S, then set

ωl := ([S|U1 ], . . . , [S|Uk ])

so that (ωl)l≥1 is a Markov chain. To get ωl+1 from ωl,

• Let V1, . . . , Vm be the [Hl+1 ↑ Hl+2]-excursion intervals of ωl (this is the collection of
[Hl+1 ↑ Hl+2]-excursion intervals over the k quotient excursions in ωl).

• Independently sample uniformly random excursions in E|Vj |(Hl+1,max ≥ Hl+2).

• Take equivalence classes.

In particular, this shows that the distribution of ωl+1 given ωl is entirely determined by the
lengths of the [Hl+1 ↑ Hl+2]-excursion intervals of ωl. The transition probabilities of this
Markov chain can therefore be deduced from (7.2).

We will use the notation b = b(ωl) for the vector of the lengths of all the [Hl+1 ↑ Hl+2]-
excursion intervals, and denote kl = k(ωl) the total number of these intervals. Note that ωl
consists of kl−1 quotient excursions. We will also write

gl = g(ωl) = Hl+2 −Hl+1

and
Gap(ωl) = n−

∑
βi

where the sum is over the components βi of b(ωl). Note that Gap(ωl−1) can also be determined
from ωl, because ωl contains the information about the [Hl ↑ Hl+1]-decomposition. Now we
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define the test function for the large deviations estimate. Define V : Ω→ R+ by

V (ωl) = sGap(ωl)g
−2
l

kl∏
i=1

q1(βig
−2
l ≤W0)(2 + (βig

−2
l )1/4)1/2

kl−1∏
j=1

q1(S|Uj−Hl /∈good1,2,3(Hl+0.5−Hl,Hl+1−Hl)).

(7.6)

For the rest of the paper, we will abbreviate this last term to q1(S|Uj /∈good1,2,3). See the end of
Section 6 for some heuristic remarks about the function V .

It will be useful to write the test function in the form

V (ωl) = sGap(ωl−1)g−2
l

kl−1∏
i=1

vgl−1↑(λ+1)gl−1
(S|Ui −Hl)

1/2q1(S|Ui /∈good1,2,3).(7.7)

where vh1↑h2 : E(0,max ≥ h1)→ R+ is defined by

vh1↑h2(S) = s2(a1+···+ak+1)g−2
2k+1∏
j=k+2

(2 + (ajg
−2)1/4)q21(ajg

−2≤W0).(7.8)

Here a1, . . . , a2k+1 is the vector of lengths in the [0 ↑ h1 ↑ h2]-decomposition of S, and
g = h2 − h1. Note that vh1↑h2 is well defined on the quotient space of E(0,max ≥ h1)
described at the beginning of this section.

We need to show that V satisfies the assumptions of Theorem A.3. The proof of the following
crucial Lemma will occupy the next section.

Lemma 7.8. Set q = λ20. For sufficiently large λ > 1 and sufficiently small s > 1, the
following holds. For sufficiently large L,Λ > 1, sufficiently small W0 > 0, we have

E[V (ωl+1)|ωl = ω]

V (ω)
≤ 1 for all ω ∈ Ω.(7.9)

If S /∈ Good1,2,3(Hl, Hl+1) or S /∈ Good4,5(Hl+1, Hl+2),

E[V (ωl+1)|ωl = ω]

V (ω)
< λ−20.(7.10)

Finally, for 0 < r < 1,

EV (ωρ) .λ r
−1/4.(7.11)

where ρ satisfies Hρ−1 < r
√
n ≤ Hρ.
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Proof. Recall that ωl+1 is generated by the kl independent excursions T1, . . . , Tkl , where Ti is
uniformly randomly chosen from Eβi(Hl+1,max ≥ Hl+2). Using (7.6) for the denominator
and (7.7) for the numerator, we can write

E[V (ωl+1)|ωl = ω]

V (ω)
=

sGap(ωl)g
−2
l+1
∏kl

i=1 E
[
vgl↑(λ+1)gl(Ti)

1/2q1(Ti /∈good1,2,3)
]

sGap(ωl)g
−2
l

∏kl
i=1 q

1(βig−2≤W0)(2 + (βig
−2
l )1/4)1/2

∏kl−1

j=1 q
1(S|Uj /∈good1,2,3)

= s−Gap(ωl)(1−λ−2)g−2
l

(
kl∏
i=1

E
[
vgl↑(λ+1)gl(Ti)

1/2q1(Ti /∈good1,2,3)
]

q1(βig
−2
l ≤W0)(2 + (βig

−2
l )1/4)1/2

)
kl−1∏
j=1

q−1(S|Uj /∈good1,2,3),

where the expectations are with respect to independent, uniformly random Ti ∈ Eβi(0,max ≥
gl).

By the Cauchy-Schwarz inequality, each term in the middle product is bounded above by(
Evgl↑(λ+1)gl(Ti)

2 + (βig
−2
l )1/4

)1/2

·
(
Eq21(Ti /∈good1,2,3)

q21(βig
−2
l ≤W0)

)1/2

.(7.12)

Set λ = λ0 + 1 where λ0 is the constant of Lemma 7.9, and set q = λ20, and W0 to be the
constant of Lemma 7.9. Choose s < sλ small enough that

s2g−2
ρ−1 · exp

(
−c0

1

H2
ρ

)
≤ 1.(7.13)

This last condition on s will only be used further below in the proof of (7.11).

For these parameters, we have from Lemma 7.9 that the first term in (7.12) is bounded by(
7
8

)1/2
.

Now we turn to the second term of (7.12). By Proposition 7.7 with ε = 0.01q−2 there is a
Λ > 0 such that for L ≥ L0(Λ) we have

Eq21(Ti /∈good1,2,3)

q21(βig
−2
l ≤W0)

≤ 1 + q2P(Ti /∈ good1,2,3|βig−2
l > W0) ≤ 1.01.

It follows that the product (7.12) is bounded by 0.95. Thus we get

E[V (ωl+1)|ωl = ω]

V (ω)
≤ s−Gap(ω)(1−λ−2)g−2

l 0.95kl
kl−1∏
j=1

q−1(S|Uj /∈good1,2,3).(7.14)

This immediately implies (7.9). Now suppose S|Uj /∈ good1,2,3 for some j, or S /∈ Good4,5(Hl+1, Hl+2).

In the latter case this implies that kl ≥ L or Gap(ωl)g
−2
l ≥ L. Then

E[V (ωl+1)|ωl = ω]

V (ω)
≤ max

(
s−L(1−λ−2), 0.95L,

1

q

)
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and this last expression can be made to be smaller than λ−20 by taking L large. This proves
(7.10).

To prove the last inequality (7.11), we will show that

E[V (ωρ)] ≤ E[vHρ↑Hρ+1(S)]1/2 . (2 + (n/g2
ρ−1)1/4)1/2 ≤ Cλr

−1/4,(7.15)

where the last inequality is clear from the definition of ρ.

For the first inequality, let V ′(ωl) = V (ωl)
∏kl−1

j=1 q
−1(S|Uj /∈good1,2,3) and notice that V ′(ωl) is

b(ωl)-measurable. Recall that b(ωl) is the vector of lengths of the [Hl+1 ↑ Hl+2]-excursion
intervals. Thus

EV (ωρ) = E [E [V (ωρ)|b(ωρ−1)]] = E
[
E
[
V (ωρ)

V ′(ωρ−1)

∣∣∣∣b(ωρ−1)

]
V ′(ωρ−1)

]
≤ E[V ′(ωρ−1)],

where the inequality is from (7.14), using the fact that conditioning on ωρ−1 is the same as
conditioning on b(ωρ−1), and the fact that s > 1. This last expectation is, by (7.6), equal to

E[V ′(ωρ−1)] = E

[
s(a1+···+ak+1)g−2

ρ−1

2k+1∏
i=k+2

q1(aig
−2
ρ−1≤W0)(2 + (aig

−2
ρ−1)1/4)1/2

]
= EvHρ↑Hρ+1(S)1/2 ≤ E[vHρ↑Hρ+1(S)]1/2,

where S is a uniformly random element of En(0) and the a1, . . . , a2k+1 are the lengths in the
[0 ↑ Hρ ↑ Hρ+1]-decomposition.

For the second inequality of (7.15), apply Lemma 7.9 with our choices of q and W0, and
µ = Hρ+1

Hρ
− 1 ∈ [λ0, λ0 + 1] to obtain

E[vHρ↑Hρ+1(S)|maxS ≥ Hρ] ≤
7

8
(2 + (ng−2

ρ−1)1/4).

On the other hand, we have by Proposition B.5 that P(maxS < Hρ) . exp(−c0
n
H2
ρ
), while

E[vHρ↑Hρ+1(S)|maxS < Hρ] = s2ng−2
ρ−1 . Thus by our choice of s, (7.13), we are done.

Now that we have proved that our test function V satisfies the hypotheses of Theorem A.3,
we can apply the theorem and prove that most of the scales are good.

Proof of Proposition 7.5. Choose the constants L,Λ, s, λ,W0 so that the conclusion of Lemma
7.8 holds. Applying Theorem A.3 (with ε = 1

4
) to the Markov chain (ωl)l≥ρ and the test

function u(ωl) = V (ωl) yields
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P
(
|{l = ρ, . . . , N : S ∈ Good1,2,3(Hl, Hl+1) and S ∈ Good4,5(Hl+1, Hl+2)}|

N − ρ
<

3

4

)
. r−1/4(λ−5)(N−ρ+1) ≤ r−1/4(λ−1r−1/2)−5 ≤ λ5r2.25.

Here we have used (7.4).

To improve the Good5 above into Good5̃, we use the union bound together with the following
observation. If kl = 0 for some l ≤ N then maxS ≤ HN+2. Thus if maxS > HN+2 then
Good5(Hl, Hl+1) implies Good5̃(Hl, Hl+1). Now HN+2 < λ4r1/2

√
n, and by Proposition B.5,

PEn(0)(maxS ≤ λ4r1/2
√
n) ≤ 3

2
exp

(
−c0

1
λ8r

)
which is bounded by r2.25 for r sufficiently small.

We have shown that the proportion of scales l = ρ, . . . , N that do not satisfy Good1,2,3(Hl, Hl+1)
is bounded by 1/4, and likewise the proportion of scales that do not satisfy Good4,5̃(Hl, Hl+1)
is bounded by 1/4 + 1/(N − ρ). The statement of the proposition follows.

7.6 Proof of bound for v

Recall the definition of v in (7.8).

Lemma 7.9. There exists µ0 such that for g, h integer with µ := h/g − 1 ≥ µ0 there exists
W0 > 0 such that for all 1 < s < s(µ), we have for all w > 0 even and g ≥ 1 integer,

Evg↑h(S)

2 + (wg−2)1/4
≤ 7

8

whenever q ≤ (µ+ 1)20. Here the expectation is with respect to S being a uniformly random
element of Ew(0,max ≥ g).

Proof. First we assume that wg−2 ≤ 1. In this case, it is likely that k = 0, and it suffices to
use the bounds (2 + (wg−2)1/4) ≤ 3 and (a1 + · · ·+ ak+1)g−2 ≤ 1 and q1(ag−2≤W0) ≤ q. We get

E(vg↑(µ+1)g(ai))

2 + (wg−2)1/4
≤
s2µ−2E

(
3kq2k

)
2

≤ s2µ−2

2

(
1 + p

∞∑
k=1

p̃k−13kq2k

)

=
s2µ−2

2

(
1 + p

3q2

1− 3p̃q2

)

In the second inequality we have used Lemma 7.6, where p and p̃ are the probabilities in
the conclusion of that lemma. Recall that they converge to 0 exponentially in (µ− 1)2 as
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µ→∞ (when wg−2 is bounded). Thus for any s > 1, if q is polynomial in µ, this expression
is bounded by 7

8
as long as µ is sufficiently large.

Now we turn to the case wg−2 > 1. By (7.2), we have

Evg↑(µ+1)g(S)

2 + (wg−2)1/4
=
|Ew(0,max ≥ g,max < (µ+ 1)g)|

|Ew(0,max ≥ g)|
s2wg−2µ−2

2 + (wg−2)1/4
+ I(7.16)

where

I =
1

2 + (wg−2)1/4

1

|Ew(0,max ≥ g)|

∞∑
k=1

∑
a1+···+a2k+1=w

s2a1g−2µ−2|Za1(0 ↑ g,max < (µ+ 1)g)| · s2a2g−2µ−2|Za2(g ↓ 0,max < (µ+ 1)g)|

×
k+1∏
i=3

s2aig
−2µ−2|W↑

ai
(g → g, 0 ≤ min < max < (µ+ 1)g)|

×
2k+1∏
i=k+2

q21(aiµ
−2g−2≤W0)|Eai(g,max ≥ (µ+ 1)g)| · (2 + (aiµ

−2g−2µ−2)1/4).

Multiplying each term in the sum by

1 = µ−k
1

g2−w
2−a12−a2

k+1∏
i=3

g−12−ai
2k+1∏
i=k+1

2−aiµg,

we can write I =
∑∞

k=1Ak where

Ak =
µ−k

∑
a1+···+a2k+1=w FZ(a1)FZ(a2)

∏k+1
i=3 FB(ai)

∏2k+1
i=k+2 FE(ai)

(2 + (wg−2)1/4)g|Ew(0,max ≥ g)|2−w

where

FZ(a) = s2ag−2µ−2|Za(0 ↑ g,max < (µ+ 1)g)| · 2−a(7.17)

FB(a) = g−1s2ag−2µ−2|W↑
a(0→ 0,−g ≤ min < max < µg)| · 2−a

FE(a) = µgq21(aµ−2g−2≤W0)|Ea(0,max ≥ µg)| · 2−a(2 + (ag−2µ−2)1/4).

We bound Ak using the following observation, valid for any positive functions F1, . . . , F2k+1:

1

Z

∑
a1+···+a2k+1=w

2k+1∏
i=1

Fi(ai) ≤
1

Z

2k+1∑
j=1

∑
a1+···+a2k+1=w

aj≥w(2k+1)−1

2k+1∏
i=1

Fi(ai)

≤
2k+1∑
j=1

sup
w(2k+1)−1≤a≤w

Fj(a)

Z

2k+1∏
i=1
i 6=j

∞∑
a=0

Fi(ai).
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Now Lemmas 7.10, 7.11 and 7.12 below show that, given ε, if µ > 1 is sufficiently large and
s > 1 is sufficiently small, then for all q > 1 there exists L large and W0 small such that

Ak ≤ µ−k · [2 · CZ(2k + 1)3/2ΣZΣk−1
W Σk

E + (k − 1) · CW(2k + 1)3/2Σ2
ZΣk−2

W Σk
E

+ k · µ(2k + 1)3/2εΣ2
ZΣk−1

W Σk−1
E ]

≤ C2k+1µ−k(2k + 1)3/2(k + 1) + C2kµ−k+1(2k + 1)5/2kε,(7.18)

where in the last line we have absorbed all the constants C...,Σ... into a single constant C.

Therefore

I ≤
∞∑
k=1

C2k+1µ−k(2k + 1)3/2 + C2kµ−k+1(2k + 1)5/2kε.

Taking ε small and µ large gives I ≤ 1/8. Turning back to the rest of (7.16), we have

|Ew(0,max ≥ g,max < (µ+ 1)g)|
|Ew(0,max ≥ g)|

s2wg−2µ−2

2
≤ PEw(0)(maxS < (µ+ 1)g)

s2wg−2µ−2

2

≤ 3

2
e−c0w(µ+1)−2g−2 s2wg−2µ−2

2
.

Here we used Proposition B.5 for the second inequality. For sufficiently small s > 1, this is
bounded above by 3

4
.

Together with our bound I ≤ 1/8, this proves the desired estimate when wg−2 > 1.

7.6.1 6 inequalities

In this subsection we prove the inequalities needed in the proof of Lemma 7.9. For the
definitions of FZ, FE and FB, see (7.17), and let

Z = g|Ew(0,max ≥ g)|2−w · (2 + (wg−2)1/4).

Lemma 7.10. There exists ΣE > 0 such that for µ ≥ 2 sufficiently large, all q > 1 and
sufficiently small W0 we have

∞∑
a=1

FE(a) ≤ ΣE(7.19)

uniformly in g. Furthermore, for every ε > 0,

sup
w≥a≥w(2k+1)−1

FE(a)

Z
≤ µ(2k + 1)3/2ε(7.20)

if µ is large and W0 small enough.
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Proof. (7.19) is equivalent to: For all µ ≥ 2 sufficiently large, for all q > 1, for sufficiently
small W0,

∞∑
a=1

µgq1(ag−2≤W0µ2)|Ea(0,max ≥ µg| · 2−a · (2 + (ag−2µ−2)1/4) ≤ ΣE.

The left hand side only depends on µg, so we may replace µg with g. We will split the
sum into two parts: ag−2 ≤ W0 and ag−2 > W0. We have, by Stirling’s approximation and
Proposition B.5,

∞∑
a>g2W0

gq1(ag−2<W0)|Ea(0,max ≥ g)| · 2−a · (2 + (ag−2)1/4)

.
∞∑
a=1

g exp

(
−c0

g2

a

)
a−3/2(2 + (ag−2)1/4) =

∞∑
a=1

1

g2
exp

(
−c0

g2

a

)
(ag−2)−3/2(2 + (ag−2)1/4)

.
∫ ∞

0

x−3/2 exp

(
−c0

1

x

)
(2 + x1/4)dx.

(7.21)

On the other hand, a similar sequence of computations shows that

∑
a≤g2W0

qg|Ea(0,max ≥ g)| · 2−a · (2 + (ag−2)1/4) . q

∫ W0

0

x−3/2 exp

(
−c0

1

x

)
(2 + x1/4)dx.

Combining this with (7.21) proves (7.19).

Now we turn to the second inequality of the lemma. Choose µ1 = µ1(ε) large enough that

sup
w≥a≥w(2k+1)−1

2 + (ag−2µ−2)1/4

2 + (wg−2)1/4
< ε(7.22)

whenever wg−2 > µ2
1 and µ > µ1. By Proposition B.5 (parts a and c), there exists µ2 > 1

such that if µ > µ2 then

PEa(0)(maxS ≥ µg)

PEa(0)(maxS ≥ g)
. exp

(
−c0µ

2g2/a
)
≤ ε, whenever ag−2 ≤ µ2

1.(7.23)

Choose µ > max(µ1, µ2). The same proposition also shows that if 0 < W0 < W0(µ, q, ε) is
sufficiently small, then

PEa(0)(maxS ≥ µg)

PEa(0)(maxS ≥ g)
≤ εq−1, whenever ag−2 < W0.(7.24)
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By Stirling’s approximation and the monotonicity Lemma B.10,

|Ea(0,max ≥ µg)|2−a

|Ew(0,max ≥ g)|2−w
=
|Ea(0)|2−a · PEa(0)(maxS ≥ µg)

|Ew(0)|2−w · PEw(0)(maxS ≥ g)

≤ C0

( a
w

)−3/2

·
PEa(0)(maxS ≥ µg)

PEa(0→0)(maxS ≥ g)
.(7.25)

From this we see that to prove (7.20) it suffices to show that

sup
w≥a≥w(2k+1)−1

q21(aµ−2g−2≤W0) PEa(0)(maxS ≥ µg)

PEa(0→0)(maxS ≥ g)
· 2 + (ag−2µ−2)1/4

2 + (wg−2)1/4
≤ ε.

The case W0 ≤ ag−2 ≤ µ2
1 follows from (7.23), whereas (7.24) takes care of the case ag−2 < W0,

and the case ag−2 > µ2
1 follows from (7.22) and (7.25).

Lemma 7.11. There exist constants ΣW, CW <∞ so that the following holds. For µ ≥ 2,
there exists s > 1 such that

∞∑
a=1

FB(a) ≤ ΣW(7.26)

uniformly in g, and if wg−2 ≥ 1, then for all k > 1,

sup
w(2k+1)−1≤a≤w

FB(a)

Z
< CW(2k + 1)3/2.(7.27)

Proof. Let p = PW↑
a(0→0)(−g ≤ minS < maxS < µg). Then by (B.7),

p ≤ PW↑
a(0→0)(−g ≤ minS) ≤ 4(ag−2)−1.

Using this together with Proposition B.5c) gives

p ≤ min(3/2e−c0µ
−2ag−2

, 4a−1g2).

We have, by Stirling’s approximation (Lemma B.4)

|W↑
a(0→ 0,−g ≤ min < max < µg)| · 2−a = |W↑

a(0→ 0)| · 2−ap
≤ Cstira

−1/2 min(3/2e−c0µ
−2ag−2

, 4a−1g2).

Now choose T large enough and s small enough that C0e
−c0µ−2xs2µ−2x ≤ 8x−1 for real numbers

x ≥ T . By making s > 1 smaller if necessary, we can assume that s2xµ−2 ≤ 2 for x ∈ [0, T ].
Later in the proof we will also need to assume that T ≥ 1.
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By considering the cases 2ag−2 ≥ T and 2ag−2 < T separately, we get

sag
−2µ−2|W↑

a(0→ 0,−g ≤ min < max < µg)| · 2−a ≤ 8Cstira
−3/2g2.(7.28)

To prove (7.26), we split the sum into two parts and use (7.28) to bound the right sum:

∞∑
a=1

FB(a) ≤
∑
a≤g2

g−1 · sag−2µ−2

Cstira
−1/2 +

∑
a>g2

g−18Cstira
−3/2g2

≤
∑
a≤g2

g−1 · 2Cstir · a−1/2 +
∑
a>g2

g · 8Cstira
−3/2,

and both sums are bounded by a constant ΣB independent of g. This completes the proof of
(7.26).

For the other statement (7.27), we have from Proposition B.5b) and Stirling’s approximation
(Lemma B.4) that there is a constant c > 0 such that

|Ew(0,max ≥ g)| · 2−w ≥ C−1
stira

−3/2c whenever wg−2 ≥ 1.(7.29)

Together with (7.28), this immediately implies (7.27).

Lemma 7.12. There exist constants ΣZ, CZ <∞ such that the following holds. For µ ≥ 2,
for sufficiently small s > 1

∞∑
a=1

FZ(a) ≤ ΣZ(7.30)

uniformly in g, and if wg−2 ≥ 1, then for all k ≥ 1,

sup
w≥a≥w(2k+1)−1

FZ(a)

Z
< CZ(2k + 1)3/2.(7.31)

Proof. We have by Lemma B.9 and Proposition B.5c),

PZa(0↑g)(maxS ≤ (µ+ 1)g) ≤ 3/2e−c0(µ+1)−2ag−2

(7.32)

for some universal constant c0 > 0. Substituting (B.3) and (7.32) into the sum (7.30) gives

∞∑
a=1

FZ(a) ≤
∞∑
a=2

2Cstirg
−2(a/g2)−3/2 · e−

g2

3a e−c0(µ+1)−2ag−2

s2ag−2µ−2

≤ 2Cstir

∞∑
a=2

g−2(a/g2)−3/2e−
g2

3a

.
∫ ∞

0

x−3/2 · e−1/xdx =: ΣZ.

62



where the second last inequality holds as long as s2µ−2 ≤ ec0(µ+1)−2
. This proves the first

statement of the Lemma.

The second statement follows again from (B.3) and (7.29).

7.7 Conclusion of the proof of Theorem 1.4

We now have all ingredients to prove Theorems 1.4 and 1.3. Denote fS : ∆ → C \ TS the
(unique) normalized conformal map that solves the welding problem associated with an
excursion S of length 2n, so that TS is a balanced tree homeomorphic to the tree encoded by
S via (1). The uniform measure on excursions pushes forward to a measure µn on the space
S of conformal maps via S 7→ fS. Theorem 1.4 states that µn converges weakly to a measure
µ on S equipped with the sup norm. It also claims that µ is supported on Hölder continuous
conformal maps and that the law of the lamination Lf is that of the CRT. In particular, the
CRT admits conformal welding, which is the statement of Theorem 1.3.

We first show that the sequence of measures µn is tight. Note that tightness in the weaker
topology of compact convergence (equivalent to the sup-norm on a circle {|z| = R} for any
fixed R > 1) easily follows from compactness of the space of conformal maps in that topology,
as observed in Proposition 1.5.1 of Joel Barnes’ thesis [Bar14]. A main result of [Bar14] was
the non-triviality of any subsequential limit µ, namely µ(IdentityC\D) = 0. In the stronger
topology of the sup-norm on T, our space is not compact and we need an estimate for the
modulus of continuity ωf of f .

By the Arzela-Ascoli theorem it suffices to show that for every ε > 0 there are δ > 0

µn(ωf (δ) > ε) < ε

for all n. To this end, we first note that Brownian scaled excursions eS are Hölder continuous
with high probability: Indeed, the proof of Lemma B.4 can be adapted to show that for every
Hölder exponent α < 1/2 there is a constant C = Cε,α such that

P(eS is (C, α)-Hölder) ≥ 1− ε

independently of n. See Lemma 1.5.1 of [Bar14] for a different proof. Denoting (Te, de) the
associated tree and p : T→ Te the quotient map, it follows that

P(p is (2C, α)-Hölder) ≥ 1− ε.

Fix n and denote A the set of excursions of length 2n for which p is (2C, α)-Hölder. Let
I ⊂ T be an interval containing 0 and S ∈ A. Then p(I) contains the root and has diameter
< 2C diam(I)α. Denote J the ball of radius r = 2C diam(I)α centered at the root. By
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Proposition 7.5 and Proposition 7.4 , f(I) can be separated from a circle of fixed radius by a
family of curves of modulus M > δ0 logλ(1/r)/2 with probability

P > 1− CrT0 = 1− C ′ diam(I)αT0 .

By Lemma 2.6, we have

diam(f(I)) . exp(−2πM) ≤ rπδ0/ log λ = C diam(I)απδ0/ log λ

on this event. By the rotational invariance of the uniform arc pairing lamination, we get
the same estimate for all intervals I ⊂ T, not only those containing 0, if we restrict to the
excursions in A. Set

β = απδ0/ log λ

and consider dyadic intervals Ij,k of size 2−k. By the above estimate we can make∑
(j,k):k≥k0

P(diam(f(I)) > C diam(I)β) < ε

by choosing k0 large, provided that αT0 > 1. Since every interval I ⊂ T can be covered by
two adjacent dyadic intervals of lesser size, we have

P(diam(f(I)) > 2C diam(I)β for some I with diam(I) < 2−k0) < ε

and tightness follows at once. Note that this also shows Hölder continuity with exponent β
on the support of any subsequential limit µ.

Let νn be the measure on pairs (en, fn) of normalized excursions and conformal maps, so that
the marginal ν ′n with respect to the first coordinate is the uniform measure on (Brownian
normalized) excursions of length 2n, and the marginal with respect to S is µn. Since µn is tight
and ν ′n converges weakly to the Ito measure n on normalized excursions, νn is tight. Consider
any weakly convergent sequence νnk → ν. By the Skorokhod representation theorem, we may
assume that enk → e and fn → f almost surely with respect to ν. If we show that

(7.33) Le = Lf

ν−a.s., then the Theorem follows at once: Indeed, since ν ′nk → n, Le is the Brownian
lamination, and it follows that the Brownian lamination is a conformal lamination. Moreover,
since the limit ν ′ of µnk is supported on Hölder continuous conformal maps, the conformal
map f associated with e is unique by the Jones-Smirnov theorem [JS00] regarding conformal
removability of boundaries of Hölder domains. Consequently there is only one possible limit
ν ′, and convergence of µn is established.

To prove (7.33), we first notice that if e has distinct local minima (so that the tree coded by
e has degree ≤ 3), then enk → e implies Lenk → Le in the Hausdorff metric, see the proof of
Proposition 1.3.2 in [Bar14]. Next, since Len = Lfn , it easily follows that Le ⊂ Lf : Indeed, if
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(x, y) ∈ Le, then there are (xn, yn) ∈ Len and f(x) = limn→∞ fn(xn) = limn→∞ fn(yn) = f(y)
so that (x, y) ∈ Lf . To see that Lf cannot be strictly larger than Le, observe that Le is
maximal in the sense that every chord (x, y) /∈ Le intersects infinitely many chords of Le.
But if f is α−Hölder continuous, then every equivalence class of Lf has cardinality bounded
by 2/α as can easily be seen by Pfluger’s theorem.Thus Lf \ Le = ∅ almost surely and we
are done.

A Large Deviations upper bounds for Markov chains

The results of this section can be found in [DV75]. For the reader’s convenience, we give a
self contained presentation.

Let ω1, ω2, . . . be a Markov chain on a state space Ω with transition kernels π(x, dy). Let

u : Ω→ R be a function. For each x, y ∈ Ω× Ω, let f(x, y) = u(y)∫
u(z)π(x,dz)

.

Lemma A.1. For each n ≥ 1 and any choice of ω1, we have

E (f(ω1, ω2)f(ω2, ω3) · · · f(ωn−1, ωn)) = 1.

Proof. We have, by the tower property and the Markov property,

E (f(ω1, ω2)f(ω2, ω3) · · · f(ωn−1, ωn)) = E[E[f(ω1, ω2)f(ω2, ω3) · · · f(ωn−1, ωn)|(ω1, ω2)]]

= E[f(ω1, ω2)E[f(ω2, ω3) · · · f(ωn−1, ωn)|ω2]]

= E[f(ω1, ω2)]

= 1

where the second last equality is by induction on n.

Now let Γ be a set of probability measures on Ω. For u : Ω→ (0,∞), let λu : Ω→ R be the
function

λu(x) = log

(
u(x)∫

u(y)π(x, dy)

)
.

For x ∈ Ω, let δx denote the Dirac mass at x.

Theorem A.2. For any u : Ω→ (0,∞), we have

(A.1) P

(
1

n

n∑
k=1

δωk ∈ Γ

)
≤ Eu(ω1)

inf u
exp

(
−n inf

µ∈Γ

∫
λudµ

)
.
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Proof. Observe that

1

{
1

n

n∑
k=1

δωk ∈ Γ

}
≤ exp

(
1

n

n∑
k=1

λu(ωk)− inf
µ∈Γ

∫
λudµ

)

because the term in the parentheses is positive whenever the expression on the left is equal
to 1. Taking expectations of the n−th power of both sides yields

(A.2) P

(
1

n

n∑
k=1

δωk ∈ Γ

)
≤ exp

(
−n inf

µ∈Γ

∫
λudµ

)
E exp

(
n∑
k=1

λu(ωk)

)
.

We have

exp

(
n∑
k=1

λu(ωk)

)
=

n∏
k=1

u(ωk)∫
u(y)π(ωk, dy)

=
u(ω1)∫

u(y)π(ωn, dy)

n−1∏
k=1

u(ωk+1)∫
u(y)π(ωk, dy)

.

Thus

E exp

(
n∑
k=1

λu(ωk)

)
≤ E

u(ω1)

inf u
E
n−1∏
k=1

u(ωk+1)∫
u(y)π(ωk, dy)

.

The expectation of the product is equal to 1, by Lemma A.1. Substituting this into (A.2)
yields the result.

Theorem A.3. Let A ⊂ Ω be a subset. Suppose u : Ω→ [1,∞) is a function with λu ≥ 0.
Then for each ε > 0,

(A.3) P
(

1

n

∣∣{k : ωk ∈ A}
∣∣ ≥ ε

)
≤ Eu(ω1) exp

(
−nε inf

ω∈A
λu(ω)

)
.

Proof. We apply Theorem A.2 with Γ = {µ : µ(A) ≥ ε}. We have infµ∈Γ

∫
λudµ ≥

infµ∈Γ

∫
A
λudµ ≥ µ(A) infω∈A λu(ω) ≥ ε infω∈A λu(ω) because λu ≥ 0.

B Random Walk estimates

The following lemma will be used to convert probabilistic statements about the maximum and
modulus of continuity of bridge walks to corresponding statements about walks conditioned
to be positive. Note that the statement is meaningful only when w − g is even and g ≥ 1.
The g = 1 case is special because then the left hand side can be identified with {0, . . . , w −
1} × Ew−1(0).
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Lemma B.1. There is a bijection

ϕ : {0, . . . , w − 1} × Zw(0 ↑ g)→ {1, . . . , g} ×Ww(0→ g)(B.1)

Moreover, the mapping preserves the maximum and modulus of continuity in the following
sense: if ϕ(t, S) = (y, S̃), then

1. If eS̃ is (L, 1/3)-Hölder continuous the eS is (2L, 1/3)-Hölder continuous.

2. 1
3

max |S| ≤ max |S̃| ≤ 3 max |S|.

Recall that eS : [0, 1]→ R is the Brownian rescaling of S, eS(t) = w−1/2S(wt).

The existence of the bijection is known as the Dvoretzky-Motzkin cycle lemma [DM47], but
the other two properties are usually not stated in the literature so we present the proof
here.

Proof. First observe that there is a natural action of the cyclic group Zw = {0, . . . , w − 1}
on Ww(0→ g), defined by cyclically permuting the increments of the walks. More formally,
if t0 ∈ Zw and S ∈Ww(0→ g), define

Ct0S(t) =

{
S(t0 + t)− S(t0) if 0 ≤ t ≤ w − t0
S(t+ t0 − w) + g − S(t0) if w − t0 ≤ t ≤ w.

(B.2)

Now we describe the map ϕ. Suppose (t0, S) ∈ {0, . . . , w − 1} × Z(0 ↑ g). Let y0 =
g −minS|[t0,w]. Since for S ∈ Z(0 ↑ g), the last step is always going up from g − 1 to g, we
have minS|[t0,w]| ≤ g − 1 and hence y0 ∈ {1, . . . , g}. Then ϕ(t0, S) = (y0, Ct0S) is the desired
mapping.

The inverse mapping is described as follows. Suppose (y0, S̃) ∈ {1, . . . , g} ×Ww(0 → g).
Let h0 = min S̃ + y0. Let s0 = max{s : S̃(s) = h0 − 1} + 1. Then S̃(s0) = h0 and
ϕ−1(y0, S̃) = (w − s0, Cs0S̃) is the desired inverse mapping, and the bijection is proved.

Statement 1) follows from the fact that if eS is (L, α)-Hölder continuous then for any t0, eCt0S
is (2L, α)-Hölder continuous. Statement 2) follows from the fact that the maximum of any
cyclic permutation of any walk S ∈Ww(0→ g) is bounded by (g −minS) + maxS which is
in turn bounded by 3 max |S|.

We will need the following asymptotics for the number of Z walks in Lemma 7.12.

Corollary B.2. We have, for integers a, g > 0

|Za(0 ↑ g)| = g

a

(
a

a
2

+ g
2

)
,
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and

|Za(0 ↑ g)| · 2−a ≤ Cstirg
−2(a/g2)−3/2e−

g2

3a(B.3)

for some constant Cstir.

Proof. The equality follows immediately from (B.1). For the inequality, we use the simple
consequence of Stirling’s formula

(B.4) C−1
stirw

−1/2 ≤
(
w

w/2

)
2−w ≤ Cstirw

−1/2

and obtain

|Za(0 ↑ g)| · 2−a =
g

a

(
a

a
2

+ g
2

)
2−a =

g

a

(
a
a
2

)
2−a · (a/2)(a/2− 1) · · · (a/2− g/2 + 1)

(a/2 + 1)(a/2 + 2) · · · (a/2 + g/2)

≤ Cstirga
−3/2

(
1

1 + g
a

)g/2
≤ Cstirg

−2(a/g2)−3/2 · exp

(
− g

2

3a

)
,

where in the last equality we have used the fact that y log(1 + x) ≥ 2
3
xy when x ∈ [0, 1] and

y ≥ 0.

The next lemma allows us to convert probabilistic statements about walks to probabilistic
statements about bridges, and vice versa.

Lemma B.3 (Local absolute continuity of bridges and walks). Fix 0 < u < w integer, suppose
|h| ≤ c0w

1/2, and let A be a subset of Wu(0). Suppose u
w
≤ 3

4
. Then PWw(0→h)(S|[0,u] ∈ A) ≤

C0PWw(0)(S|[0,u] ∈ A), where the constant C0 only depends on c0.

If, in addition, there exists c1 ≤ 1 such that A only contains walks for which S(u) ≤ c1(w−u)2,
then PWw(0)(S|[0,u] ∈ A) ≤ C0PWw(0→0)(S|[0,u] ∈ A) where C0 only depends on c1.

Proof. The first statement is proved for h = 0 in [KM09, Lemma 3], and the statement for
general h follows from the obvious modifications. It suffices to consider the case when A
has only one element, A = {S ′} and then the relevant probabilities can be written down
explicitly in terms of S ′(u). The second statement follows from the same proof.

For example, the previous lemma allows us to deduce the Hölder continuity of the Brownian
rescaling (7.3) of Z-walks:

Lemma B.4. For ε > 0, Λ, L2 > 1, there exists L3 > 0 large such that the following holds.
If g ≥ Λ with g − w even and if g′ = bg/Λc satisfies wg′−2 ∈ [L−1

2 , L2], then

P(eS is (L3, 1/3)− Hölder continuous ) ≥ 1− ε

where S is a uniform random walk of type Zw(0 ↑ g′,max < g).
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Proof. The idea of the proof is to relate walks of this type to walks of type B using Lemma
B.1. This relationship essentially preserves the modulus of continuity of the walk. Then we
use the fact that walks of type B are locally absolutely continuous to the simple random
walk. The Hölder continuity of the Z walks then follows from the Hölder continuity of the
simple random walk. This sort of argument was used in [KM09] to get uniform bounds for
the maximum of a Brownian excursion.

It suffices to prove the result when S is a uniform random walk of type Zw(0 ↑ g′), because the
uniform measure on Zw(0 ↑ g′,max ≤ g′) is absolutely continuous to the uniform measure on
Zw(0 ↑ g′), indeed by Proposition B.5 we have PZw(0↑g′)(maxS < g) ≥ c0 for some constant
c0 that only depends on Λ and L2.

Lemma B.1 and its proof implies that we can sample a uniform random element of Zw(0 ↑ g′)
by choosing a uniform random element of Ww(0→ g′), and then applying a certain (random)
cyclic permutation of the increments, and as observed in that lemma, this cyclic permutation
preserves the modulus of continuity. Therefore it suffices to prove the result for uniform
random walks of type Ww(0 → g′). Now observe from the triangle inequality that if a
function is (L/2, α)-Hölder continuous when restricted to [0, 1/2] and [1/2, 1] respectively,
then it is (L, α)-Hölder continuous on [0, 1]. Therefore from symmetry and the union bound
it suffices to find L3 large enough that

PWw(0→g)(eS|[0,1/3] is not (L3/2, 1/3)− Hölder continuous) ≤ ε/2.

By Lemma B.3 below, the law of S|[0,dw/2e] under PWw(0→g′)is absolutely continuous to the
law of S|[0,dw/2e] under PWw(0) with a constant C0 that only depends on L2. So it suffices to
find L3 large enough that

PWw(0)(eS|[0,1/2] is not (L3/2, 1/3)− Hölder continuous) ≤ ε/(2C0).

This last statement follows from the proof of Kolmogorov’s continuity criterion.

B.1 Bounds on the extrema of a random walk

In this section we collect some bounds on the probability that a random walk of length w
exceeds a given height g. The analogous bounds for Brownian motion are simpler to state
and prove, but we need statements that are uniform in w and g.

Proposition B.5. a) We have, for some c0 > 0,

PWw(0)(max |S| ≥ y) . exp

(
−2y2

w

)
,

PEw(0→0)(max |S| ≥ y) . exp

(
−c0

y2

w

)
,
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and

PWw(0→0)(max |S| ≥ y) . exp

(
−c0

y2

w

)
,

PW↑
w(0→0)(max |S| ≥ y) . exp

(
−c0

y2

w

)
.

b) For δ > 0 there exists cδ > 0 such that if w ≥ δy2, then the conditional probabilities of a)
are either zero or bounded below by cδ,

P·(maxS ≥ y) ≥ cδ.

c) Finally, there exists c0 > 0 such that the conditional probabilities of a) satisfy

P·(max |S| ≤ y) ≤ 3

2
exp

(
−c0

w

y2

)
.

Proof. By André’s reflection principle [Fel68, page 72],

PWw(0)(maxS ≥ y) = 2PWw(0)(S(w) > y) + PWw(0)(S(w) = y)

so that

2PWw(0)(S(w) > y) ≤ PWw(0)(maxS ≥ y) ≤ 2PWw(0)(S(w) ≥ y).(B.5)

Now PWw(0)(S(w) ≥ y) ≤ exp(−2y2/w) by Hoeffding’s inequality [Hoe63, Theorem 2] and
by the union bound we have proved the first claim PWw(0)(max |S| ≥ y) ≤ 4 exp(−2y2/w).

On the other hand, by the central limit theorem we have that

PWw(0)(S(w) ≥ δ−1/2w1/2)→ c′δ > 0 as w →∞(B.6)

and claim b) for Ww(0) follows. Claim c) for Ww(0) now follows from the strong Markov
property by decomposing the walk into subwalks of length proportional to y2 and then using
the result of part b) on each of these walks: if any subwalk varies more than 2y from its initial
point, then the maximum absolute value of the walk must exceed y. This shows that the

probability that the maximum is bounded by y is less than C0 exp
(
−c0

w
y2

)
. The constant

C0 may be taken to be 3
2

by taking c0 smaller if necessary.

A coupling argument similar to the proof of Lemma B.8 below shows that the absolute
maximum of a bridge is stochastically dominated by the absolute maximum of a Bernoulli
walk, so this proves a) for bridges Ww(0→ 0). The exact same proof works for W↑

w(0→ 0)
and Ww(0→ 1).

This latter statement can be used together with the cycle lemma, Lemma B.1, to prove part
a) for PEw(0).
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Part b) for bridges and excursions is proved similarly to part b) for walks, and follows from the
fact that the measures converge to the Brownian bridge and Brownian excursion respectively.

Part c) for bridges follows from part c) for walks together with Lemma B.3 below, which
says that the initial part of a random bridge is almost indistinguishable from the initial part
of a random walk. Part c) for excursions then follows from the cycle lemma.

The following bounds are useful when wg−2 large. In particular, the second bound does not
degenerate even when wg−2 →∞.

Lemma B.6. For integers w, g > 0,

PW↑
w(0→0)(minS ≥ −g) ≤ 4w−1g2.(B.7)

For ε > 0, we have for sufficiently large µ that, for all w, g,

PWw(µg→µg)(minS > g|minS ≥ 0) ≥ 1− ε.

Proof. We begin with the first inequality. The statement is vacuously true for w−1g2 > 1/4,
so in what follows we can assume in particular that g

w/2
≤ 1/2.

Recall that W↑
w(0→ 0) maps bijectively onto Ww−2(0→ 0), and this map can be realized

by forgetting the first and last steps of the walk and translating the whole walk up one unit.
Therefore

PW↑
w(g→g)(minS ≥ 0) = PW↑

w(0→0)(minS ≥ −g) = PWw−2(0→0)(minS ≥ −g + 1).(B.8)

We have |Ww−2(0 → 0)| =
(
w−2
w/2−1

)
, and by André’s reflection principle, |Ww−2(0 →

0,minS < −g + 1)| = |Ww−2(0→ −2g)| =
(

w−2
w/2+g−1

)
. Therefore

PWw−2(0→0)(minS < −g + 1) =

(
w/2− g
w/2

)(
w/2− g + 1

w/2 + 1

)
· · ·
(

w/2− 1

w/2 + g − 1

)
≥
(

1− g

w/2

)g
≥ e−4g2/w(B.9)

≥ 1− 4g2/w

where in the last two inequalities we have used the facts that 1− x ≥ e−2x for x ∈ [0, 1/2],
and e−x ≥ 1− x.

Together with (B.8), this proves the first inequality of the lemma.

Notice that the derivation leading up to (B.9) actually shows that for θ > 0 there exists
M > 0 such that

PWw−2(0→0)(minS ≥ −g + 1) ≥ e−
(2+θ)g2

w whenever
g

w/2
≤ 2

M + 1
,(B.10)
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because for θ > 0 there exists M > 0 such that 1− x ≥ e−(1+θ)x for x ∈ [0, 2/(M + 1)].

We also have the upper bound

PWw−2(0→0)(minS < −g + 1) =

(
w/2− g
w/2

)(
w/2− g + 1

w/2 + 1

)
· · ·
(

w/2− 1

w/2 + g − 1

)
≤
(

1− g

w/2 + g − 1

)g
≤ e−

g2

w/2+g−1 .(B.11)

For the second inequality, fix θ > 0 small and M > 1 large such that 1
2+θ
· 1

1/2+(M+1)−1 ≥ 1−ε/2
and such that (B.9) holds. First consider the case w−1g2 > 1

2Mµ
. Then by Proposition B.5,

we have for sufficiently large µ,

PWw(µg→µg)(minS > g) = PWw(0→0)(minS > −(µ− 1)g)

≥ 1− 4e−
(µ−1)2g2

2w ≥ 1− 4e−
(µ−1)2

4Mµ ≥ 1− ε.

Now suppose w−1g2 ≤ 1
2Mµ

so that in particular µg
w/2
≤ 1/M and so µg+1

w/2+1
≤ 2/(M + 1). We

have

PWw(µg→µg)(minS > g|minS ≥ 0) =
PWw(µg→µg)(minS > g)

PWw(µg→µg)(minS ≥ 0)

=
PWw(0→0)(minS > −(µ− 1)g)

PWw(0→0)(minS ≥ −µg)
.

Now, (B.10) implies that

PWw(0→0)(minS ≥ −µg) = PW(w+2)−2(0→0)(minS ≥ −(µg + 1) + 1) ≤ 1− e−(2+θ)
(µg+1)2

w+2 ,

On the other hand, (B.11) gives

PWw(0→0)(minS > −(µ− 1)g) = 1− PW(w+2)−2(0→0)(minS ≤ −((µ− 1)g − 1) + 1)

≥ 1− e−
((µ−1)g−1)2

w/2+(µ−1)g−1
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and we get

PWw(µg→µg)(minS > g|minS ≥ 0) ≥ 1− e−
((µ−1)g−1)2

w/2+(µ−1)g−1

1− e−(2+θ)
(µg+1)2

w+2

≥ ((µ− 1)g − 1)2

(µg + 1)2
· 1

2 + θ
· w + 2

w/2 + (µ− 1)g − 1

≥ ((µ− 1)g − 1)2

(µg + 1)2
· 1

2 + θ
· w + 2

w/2 + (w + 2)(M + 1)−1

≥ µ2

(µ+ 1)2
· 1

2 + θ
· 1

1/2 + (M + 1)−1

≥ µ2

(µ+ 1)2
(1− ε/2).

where in the second inequality we have used the fact that 1−e−x
1−e−y ≥

x
y

when x ≤ y, which in

turn follows from the fact that x 7→ 1−e−x
x

is decreasing. In the third inequality we have used

the fact that (µ−1)g−1
w/2+1

≤ 2(M + 1)−1. The fourth inequality is true for g ≥ 1 and can be seen
be differentiating both sides with respect to g.

For sufficiently large µ, this last expression is greater than 1− ε, as desired.

Finally, the next lemma says that the bounds of Proposition B.5 still hold even when we
make the obvious conditionings.

Lemma B.7. Let S be a uniformly random walk of type Ww(g → g,min ≥ 0). Then
P(maxS ≥ µg) . e−c0(µ−1)2g2/w.

Similarly, PWw(µg→µg)(minS ≤ g|minS ≥ 0) . e−c0(µ−1)2g2/w.

Proof. By Lemma B.11 below and Proposition B.5,

PWw(g→g)(maxS ≥ µg|minS ≥ 0) ≤ PET (0→0)(maxS ≥ (µ− 1)g) . exp

(
−c0

(µ− 1)2g2

w

)
and this proves the first statement.

The second statement follows from a similar argument, using Lemma B.12 below and
Proposition B.5.

B.2 Monotonicity properties of conditioned random walks

The next few lemmas make precise some intuitively clear monotonicity relations between
various types of walks.
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Lemma B.8 (Strong Monotonicity). Suppose w > 0 is even and fix a partition of [0, w]
into almost disjoint closed intervals A1, . . . , Am with endpoints that are even integers. Let
S be a uniformly random walk of type Ew(0 → 0). For i = 1, . . . ,m let S̃i be a uniformly
random element of EAi(0 → 0). Let S̃ be the concatenation of the Si, so that S̃ ∈ Ew(0).
Then maxS � max S̃ = max S̃1 ∨ · · · ∨max S̃m.

Proof. For i = 1, . . . ,m, let Ii = [τ−i , τ
+
i ] where τ−i , τ

+
i is the first and last time respectively

that S intersects Si. In the case that these times do not exist, let Ii = ∅.

Conditioned on {Ii}mi=0 and the values of S at the endpoints of the Ii, the collection of walks
{S|Ii}i has the distribution of m+ 1 independent bridges (conditioned to be nonnegative).
Likewise, {S̃|Ii}i has the same distribution.

Thus if we define S ′ to be the excursion obtained by replacing the part of S on each Ii with
the corresponding part of S̃, then S ′ has uniform distribution on Ew(0). On the other hand,
S|Ai\Ii ≥ S̃|Ai\Ii pointwise, due to the boundary conditions of S̃|Ai . It follows that S ′ ≥ S̃

pointwise, and so (S ′, S̃) is a coupling which proves the desired result.

Lemma B.9. Let S be a uniform random element of Ew(0) and let S̃ be a uniform random
element of Zw+1(0 ↑ g), where g ≥ 1. Then max S̃ � maxS.

Proof. The proof is the similar to the proof of Lemma B.8.

Lemma B.10 (Monotonicity). For all integer g > 0 and w2 ≥ w1 even,

PEw2 (0→0)(max ≥ g) ≥ PEw1 (0→0)(max ≥ g).

Proof. Take I1 = [0, w1] and I2 = [w1, w2] in Lemma B.8.

Lemma B.11. Fix g ≥ 0. Let S be a uniformly random element of Ew(0) and let S̃ be a
uniformly random element of Ww(0→ 0,min ≥ −g). Then maxS � max S̃.

Proof. Let A ⊂ [0, w] be the set of times for which (the linear interpolation of) S̃ is strictly
negative. Conditioned on A, the distribution of S̃|[0,w]\A is that of independent excursions

over each component of [0, w]\A. It follows from Lemma B.8 that maxS � max S̃.

Lemma B.12. Fix w > 0 even, g < 0 and h ≥ g. Let S be a uniform random walk in
Ww(h→ 0) and let S̃ be the same thing but conditioned on minS ≥ g. Then S̃ � S.

Proof. We have

P(minS ≥ g|S(1) = h+ 1) ≥ P(minS ≥ g).
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This can be proved by a coupling argument (run the walks independently until they meet,
then make them equal each other). By Bayes’ rule, we this implies

PWw(h→0)(S(1) = h+ 1|minS ≥ g) ≥ PWw(h→0)(S(1) = h+ 1).(B.12)

Using this, we get a coupling of S̃ and S for which S̃ ≥ S: We ensure that S̃(1) ≥ S(1) using
(B.12), then we let the walks evolve independently until they meet again, and then we use
(B.12) again, and so on.
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Probabilités XLII, pages 147–151. Springer, 2009.

[Bis07] Christopher J. Bishop. Conformal welding and Koebe’s theorem. Annals of
Mathematics, 166(3):613–656, 2007.

[Bis14] Christopher J. Bishop. True trees are dense. Inventiones Mathematicae, 197(2):433–
452, 2014.
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